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1. Introduction

In recent years, considerable improvements to the predictions of fission observables from the

calculation of Langevin equation have been observed. For many years, this calculation are often

done with respect to three collective variables and such calculations are often termed 3 dimensional

(3D) Langevin calculation. Additionally, most Langevin calculations are done with respect to

macroscopic transport coefficients [1–5]. In recent years, we at Chiba Laboratory have developed

microscopic transport coefficients for use with 3D-Langevin calculation [6, 7] and we have also

developed 4D-Langevin calculation [8].

Let us begin by examining how one of the fission observables, the primary fission fragment

yields are often predicted by Langevin equation. Primary fission fragment yields are calculated by

taking account of the statistics of the fission fragment mass. Assuming the case of binary fission

in Langevin equation, the masses of the fission fragment mi for each fragment i = {1, 2} are

taken into account through the collective variable α = (m1 − m2)/(m1 + m2). In practice, for

a given nucleus shape we only need to calculate the volume, V of each fragment and calculate

α = (V1 − V2)/(V1/V2) by assuming that the volume is directly proportional to the mass.

In our calculation of the Langevin equation, this collective variable evolves in time from com-

pound nucleus to scission. Scission in our calculation is defined to be the moment when the radius

of the neck connecting the two fragments becomes zero. Hence, it should be safe to assume that

the fission fragment mass at scission will stay the same until the point of detection. As we accu-

mulate more fission events, we will be able to obtain the statistics to compare the yield from our

calculation with similar data from either experimental or evaluated efforts.
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(a) Shape profile. (b) V (ρ, z) at ρ = 0.

Fig. 1: Two centre shell model profile and nuclear potential.

Apart from α, other collective variables are based on the two centre shell model [9] shape param-

eterizations and depicted in Fig. 1. The two centre shell model attempts to describe each fragment

with a harmonic potential and then fit the neck with a quadratic function and will be described

further later on. Based on this model, we are able to define all the collective variables used in our

current 4D and 3D-Langevin calculation,

q4Dµ =

{
z0
R0

, δ1, δ2, α

}
, q3Dµ =

{
z0
R0

, δ, α

}
. (1)

The difference of 4D-Langevin with 3D-Langevin calculation, lays only the requirement that δ1

must always be equal to δ2 in 3D-Langevin, hence we write δ2 = δ1 = δ = 2. In 4D-Langevin, δ1

and δ2 are allowed to evolve completely independent of each other. Here δi = 3(ai − bi)/(2ai + bi)

measures the deformation of the fragment tips. Negative δi indicates oblate fragment shape, δi = 0

means the fragment shape is perfectly spherical and positive δi implies that the fragment shape is

prolate.

At each set of collective variables, the nucleus will possess a shape that will allow us to obtain

other pertinent information such as the distance between the centres of masses for the two fragments

R12. In our preceding discussion, our focus is with regards to 3D-Langevin calculation.

At scission, the value of R12 at that moment allows us to easily calculate by point approximation

the amount of kinetic energy possessed by the fission fragments that are speeding away from each

other due to Coulomb force. If we also add the speed at which the fragment separates just prior to

scission, the total kinetic energy (TKE) of the fission event is obtained.

Hence, it is important to realize that several other models are able to study the same fission

observables if the same collective variables are being used. For example, in the scission point

model [10], a chosen set of scission points or selected by optimal shapes [11,12] and then corrected

for excitation energy [13] may also give similar fission observables.

The advantages then of handling these collective variables through the Langevin equation could

be maximized by taking full advantage of the dynamical nature of the equation. At excitation

energy just above neutron separation, perhaps only a single saddle point will lead to a path towards

fission if we begin our calculation at the minimum of the potential energy surface. With higher

excitation energy, the path through the saddle point widens and possibly even more saddle points
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opens up. The kinetic energy accumulated and temperature as it passes through the saddle may

influence the trajectories towards several different scission configuration. As such, we can predict

not just fission observables but also the interplay of the fission observables with as observed in

many experiments as shown in some of the results.

2. Langevin Equation

We can write the Langevin equation as a system of first order differential equation governing the

evolution of the collective variables qµ and its conjugate momentum pµ,

dqµ
dt

= m−1
µν pν , (2)

dpµ
dt

= −∂U(q)

∂qµ
− 1

2

∂m−1
νσ

∂qµ
pνpσ − γµνm

−1
νσpσ + gµνRν(t),

where the summation is performed over repeated indices. The potential energy surface U(q) is

taken as the sum of the liquid drop deformation energy Edef
LD and the shell corrections δE(q),

namely,

U(q, T = 0) = Edef
LD (q) + Φ(Eint)δE(q, T = 0). (3)

Edef
LD (qµ) is the amount of energy required to deform the spherical liquid drop into liquid drop

with shape qµ. The liquid drop energy calculated here is from finite-range liquid drop model [14]

with nuclear radius constant r0 = 1.20 fm, Yukawa folding function range a = 0.65 fm, surface

energy constant as = 21.836 MeV and surface-asymmetry constant κs = 3.48. Quantum effects

are included into the potential energy surface through shell corrections

δE(q) =
∑
n,p

(
δE

(n,p)
shell (q) + δE

(n,p)
pair (q)

)
. (4)

δ
(n,p)
shell(q) is calculated as the difference between the sum of single particle energies of the occu-

pied states and its averaged value defined by Strutinsky smoothing [15] and the contributions are

summed over neutrons (n) and protons (p). This however doesn’t include the effects of pairing

on the shell effects. This is mitigated by including the shell correction to the pairing correlation

energy δ
(n,p)
pair (q) evaluated using BCS theory [16].

(a) Potential energy surface
with liquid drop energy of
236U.

(b) Potential energy surface
with shell corrections on the
liquid drop energy of 236U.

(c) Shell effects on fission frag-
ments of mass yield 236U.

Fig. 2: Shell effects on Langevin calculation for fission.
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The stark difference is seen between the potential energy surface made out of the liquid drop

deformation energy only in Fig. 2a and the potential energy surface which includes shell effects in

Fig. 2b. This is reflected in the fission observables as we can see in Fig. 2c for the fission fragments

mass yield demonstrating the consequence of shell corrections on the liquid drop energy. In all of

our calculations, the shell corrections are calculated by considering temperature, T = 0 MeV.

We could also see in Eq. (3) that the shell correction is controlled by the factor Φ(Eint). Two

of the more common prescriptions for the shell correction factor are the ones by Ignatyuk [17]

written as Φ(Eint) = e−Eint/Ed and its extension formulated by Randrup and Moller [18] where

Φ(Eint) =
(
1 + e−Ed/E0

)
/
(
1 + e(Eint−Ed)/E0

)
. Here, we often use E0 = 15 MeV and Ed =

20 MeV in our 4D-Langevin and Ed = 30 MeV for our 3-D Langevin calculation with macro-

scopic transport coefficients. In our 3D-Langevin calculations with microscopic transport coeffi-

cients, we use full shell corrections where Φ(Eint) = 1. The intrinsic energy Eint is calculated at

each time step with respect to excitation energy Ex,

Eint = Ex −
1

2
m−1

µν pµpν − U(q). (5)

This bring us to the next essential ingredient to Langevin equation are the transport coefficients

consisting of the inertia m−1
µν and friction γµν tensors. Macroscopic transport coefficients are for-

mulated based only on the shape of the nucleus but microscopic transport coefficients are calculated

from microscopic approach.

2.1 Macroscopic transport coefficient

From the two definitions of kinetic energy,

T =
1

2
ρ02π

∫ zR

zL

ρ2 v⃗.v⃗ dz =
1

2

∑
µν

Mµν q̇µq̇ν (6)

with the constant density defined by ρ0 = A/(4πR3
0/3) and the nucleus assumed to be incom-

pressible fluid, we can derive the Werner-Wheeler macroscopic mass tensor [19]

MWW
µν = πρ0

∫ zR

zL

ρ2
[
AµAν +

ρ2

8
A

′

µA
′

ν

]
dz, (7)

with

Aµ(z; q) =
1

ρ2(z, q)

∂

∂qµ

∫ zR

z

ρ2(z′, q)dz′. (8)

On the other hand, the two relationship for the loss of collective energy according to Blocki [20],

Ė =
3

4
ρ0vf

∮
S

v2n(s)ds =
∑
µν

γwall
µν q̇µq̇ν (9)

could be used to obtain the wall friction γµν . vn is the velocity relative to the nuclear surface and

vF = h̄kF/m is the Fermi velocity. The Fermi momentum can be estimated from Fermi gas as

kFR0 =
3
√
9πA/4. If we wrote vn(s) in terms of ρ(z; q), the wall friction could be written as

γwall
µν = πρ

0
vF

∫ z
R

z
L

dz
∂ρ2

∂qµ

∂ρ2

∂qν

[
4ρ2 +

(
∂ρ2

∂z

)2
]−1/2

.

(10)
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As the fragments begin to separate, the wall friction is expressed as the sum of both left and right

fragment [4, 21],

γwall2
µν =

πρ
0
v̄

2

(∫ 0

zL

IL(z) dz +

∫ z
R

0

IR(z)dz

)
,

(11)

with

IL,R(z) =

(
∂ρ2

∂qµ
+

∂ρ2

∂z

∂zcm(L,R)

∂qµ

)(
∂ρ2

∂qν
+

∂ρ2

∂z

∂zcm(L,R)

∂qν

)[
4ρ2 +

(
∂ρ2

∂z

)2
]−1/2

.

(12)

Swiatecki [22] furthered the argument that as the fragment became close to a scission configuration,

a window of size ∆σ = πr2neck should be introduced to allow nucleons from each fragment to

traverse to the other fragment. This window friction term is written as

γwindow
µν =

ρ
0
v̄

2

[
∆σ

∂R12

∂qµ

∂R12

∂qν
+

32

9∆σ

∂VL

∂qµ

∂VL

∂qν

]
,

(13)

Thus at scission configuration, the amount of friction experienced should be equal to the sum of

both friction term, hence the term wall-window friction tensor,

γw+w
µν = γwall2

µν + γwindow
µν . (14)

Nix and Sierk [23] then suggest that as the nucleus separates, there should be smooth transition

from γwall
µν to γw+w

µν governed by α = (rneck/Rmin)
2. Here Rmin is the minimal semi-axes of two

outer ellipsoids in three-quadratic-surfaces shape parameterization. This ansatz is written as

γtotal
µν = sin2(πα/2)γwall

µν + cos2(πα/2)γw+w
µν , (15)

Normally this friction is very large and it is common practice to multiply it by a factor 0.27 in most

applications.

2.2 Microscopic transport coefficients

The formulation of microscopic transport coefficients on the other hand is done with the linear

response approach to the nuclear collective motion [24]. In the current calculation, pairing effects

can be included by using independent quasi-particles Hamiltonian as suggested in [25],

ĤBCS =
∑
k

2v2k(εk − λ)− 2∆
∑
k

ukvk +
∆2

G
+
∑
k

Ek(α
†
kαk + α†

k̄
αk̄). (16)

λ is the chemical potential, G the pairing strength constant and ∆ the pairing gap. The vari-

ables uk and vk are the Bogoliubov-Valatin transformation coefficient. α†
k̄

and αk̄ are the cre-

ation and annihilation operators for the quasi particles and the quasi-particle energies itself, Ek =√
(εk − λ)2 +∆2. The F̂ operator in quasi-particle representation has the form,

F̂ =
∑
k

Fkk2υ
2
k +

∑
jk

Fkjξkj
(
α†

kαj + α†
k̄
αj̄

)
+
∑
kj

Fkjηkj

(
α†

kα
†
j̄
+ αj̄αk

)
. (17)
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Fig. 3: Comparison of microscopic and macroscopic transport coefficients varied along z0/R0

with α = 0.18472 and δ = 0.2 fixed.

Denoting E−
kj ≡ Ek − Ej , E+

kj ≡ Ek + Ej , nT
k = 1/(1 + eEk/T ), ξkj ≡ ukuj − υkυj and

ηkj ≡ ukυj + υkuj , we can write the following response function,

= −2Θ(t)

h̄

′∑
kj

(nT
k − nT

j )ξ
2
kjF

jk
µ F kj

ν sin(E−
kjt/h̄)

−2Θ(t)

h̄

∑
kj

(nT
k + nT

j − 1)η2
kjF

jk
µ F kj

ν sin(E+
kjt/h̄), (18)

The diagonal components of ’ξ’-term of operator F̂ commute with the Hamiltonian, hence

χ̃µν(t) does not commute with the Hamiltonian. So the first summation are marked with a ′ and the

second sum was not marked because both diagonal and non-diagonal terms contribute. The Fourier

transform of the response function leads to

χµν(ω) =

′∑
jk

(nT
k − nT

j )ξ
2
kj

h̄ω − E−
kj + iϵ

F jk
µ F kj

ν +
∑
jk

(nT
k + nT

j − 1)η2
kj

h̄ω − E+
kj + iϵ

F jk
µ F kj

ν . (19)

Thus we are able to write the mass and friction tensor that also took into account the effects of

pairing,

γµν(0) = 2h̄

′∑
jk

(nT
k − nT

j )ξ
2
kj

E−
kjΓkj[

(E−
kj)

2 + Γ2
kj

]2F kj
µ F jk

ν

+2h̄
∑
jk

(
nT
k + nT

j − 1
)
η2
kj

E+
kjΓkj

[(E+
kj)

2 + Γ2
kj]

2
F kj

µ F jk
ν , (20)

Mµν(0) = h̄2
′∑
jk

(nT
k − nT

j )ξ
2
kj

E−2
kj [E

−
kj − 3Γkj]

[(E−
kj)

2 + Γ2
kj]

3
F kj

µ F jk
ν

+h̄2
∑
jk

(
nT
k + nT

j − 1
)
η2
kj

E+2
kj [E

+
kj − 3Γkj]

[(E+
kj)

2 + Γ2
kj]

3
F kj

µ F jk
ν . (21)

We see gradual changes from low to high temperature in microscopic transport coefficient in Fig.

3 and we see that it coincides closely with macroscopic transport coefficients at some temperature

choice. The macroscopic mass tensor described in Eq. (7) coincides with microscopic mass tensor
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at low temperature. Meanwhile, we can also see that the macroscopic mass tensor is clearly too

large if it is not factored by 0.27 but the profile is similar.

2.3 Random force and other parameters

The final term of Langevin equation in (2) also includes a random force term, determined as

the product of white noise R and the strength factors gµν . The random force strength is related to

diffusion,

Dµν = gµσgνσ. (22)

In our calculation, the diffusion tensor is calculated as the product of effective temperature T ∗ and

friction tensor through the modified Einstein relation,

Dµν = T ∗γµν . (23)

Messiah in Eq. (XII.52) of his famous textbook on Quantum Mechanics [26] introduced the

energy of the harmonic oscillator and its relationship with temperature T . It was later re-introduced

by H. Hofmann [27, 28] to show that the diffusion tensor should not approach zero at very low

temperature and with respect to effective temperature at zero point energy h̄ϖ/2 and temperature of

the system T ,

T ∗ =
h̄ϖ

2
coth

(
h̄ϖ

2T

)
, (24)

At low temperature we will get the ground energy for the harmonic oscillator. This zero point

energy [29, 30] is estimated to range between 0.45 MeV to 2.23 MeV but it is computationally

expensive to exactly calculate the zero-point energy at each time step in our calculations, so we

often use a constant h̄ϖ = 2 MeV which corresponds to the zero-point energy of 1 MeV. As a

consequence, diffusion depends only on friction temperature below 1 MeV.

Temperature itself is estimated in our calculations through Fermi gas relation,

Eint = aT 2. (25)

Here Eint is obtained from Eq. (5), and related to T through level density, a. In our calculations,

the level density we use is [31], i.e.,

a =
A

14.61

(
1.0 +

3.114
3
√
A

+
5.626
3
√
A2

)
. (26)

Admittedly, any of the choices h̄ϖ or a could prove essential in exact reproduction of experimental

fission observables but we find it surprisingly good enough for studying the interplay of fission

observables and further understanding of the fission process as we shall explore in the next section.

3. Summary of recent results

Considerable progress has been made in the Langevin calculation. In 3D-Langevin calculations,

it used to be very difficult to study the fission fragment yield at very low excitation energy. With

the introduction of effective temperature in the modified Einstein equation in Eqs. (43) and (44),
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Fig. 4: Fission fragment yield with microscopic transport coefficients and full shell corrections.

we have been able to obtain a reasonable fission fragment yield for comparison with fission due

to incident thermal neutrons and compare them with both experimental and evaluated data. The

reason our Langevin calculation had a difficulty to begin with was due to our practice of starting

our calculation at the minimum potential whenever possible. Thus the trajectory of the Langevin

equation had to cross the potential saddle. As it gets close to the saddle, Eq. (5) at such configura-

tions becomes minute. Thus the temperature determined from Eq. (25) also becomes very small.

As a result, there is hardly any diffusion across the potential saddle and even lesser chance for that

particular event to achieve scission configurations.

Most investigators seem to sidestep this problem by starting their equations on top of the second

saddle instead. This should be fine if the potential surface is well understood and all the possible

saddle points that leads to scission are well accounted. In our opinion however, it is more natural

if possible to allow the trajectories to search the saddle itself, and if the energy allows, cross the

saddle to scission configuration. In our recent publications [7], we have produced a reasonably

good fission fragment yield in comparison to evaluated results in Fig. 4a for 236U. In the case

of our 258Fm for comparison with spontaneous fission fragment yield, it is simply impossible for

the trajectories to cross the barrier given that Ex is much lower than the barrier that will lead to

scission. As such, we had no choice but to allow the trajectories to begin at the second barrier with

excitation energy of 1 MeV above the barrier, equivalent to Ex = 3.34 MeV. The result for this

calculation with 258Fm is given in Fig. 4b and compared with experimental data. It must be noted

that we were initially surprised that our fission yield was able to produce this single peak fission

yield for 258Fm and that it came quite close to the results from D. C. Hoffman [32].

This emergence of the single peak fission yield as opposed to double peak fission fragment

yield is somewhat mysterious in the past. Since our Langevin calculation can reproduce the fission

fragment yield, it might be instructive to study how the trajectories evolve with respect to the

potential energy surface, U . The trajectories for these two calculations can be examined in Fig.

5 plotted with respect to z0/R0 and δ. Additionally, the potential energy surface is minimized
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Fig. 5: 3D-langevin with microscopic transport coefficient trajectories across potential energy
surface (deformation energy) minimized with respect to α and plotted as a function of z0/R0

and δ.

with regards to mass-asymmetry α. We see that in this configuration, there is a huge barrier for

configurations with negative δ and large elongation. This prevents very oblate fragment shapes

from emerging. In the case of 236U, this barrier extends all the way to δ ≈ 0. Hence, almost all the

trajectories end up with δ ≈ 0 and such fragments are somewhat spherical. In the case of 258Fm,

this barrier extends only up to δ ≈ −0.3. As a consequence, the trajectories are able to achieve

configurations with δ < 0 and shorter z0/R0 when they finally scission. This configuration means

that the fragments are very oblate in shape and the elongation is shorter.
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Fig. 6: TKE dependence on excitation energy for 236U
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This oblate shape and the shorter elongation mean that the Coulomb repulsion is also much

stronger for 258Fm. In fact, Brosa [36] has demonstrated that such shapes are referred to as super-

short fission modes. Further examination of this shape also reveals that more often than not, the

fission fragments also have α ≈ 0 which will lead to fragments that have very similar fragment

masses as predicted by Brosa for this fission mode. This shape is also apparently the most numerous

in the fission of 258Fm, giving it single peak fission yield.

The spherical fragment shape we described earlier for 236U can be attributed to the standard

fission modes and they usually have |α| > 0. Thus they will produce a light and heavy fragment

which manifested as a double peak fission yield when tallied.

Fig. 7: TKE profile for 258Fm.

The standard fission mode is also occa-

sionally produced for the fission of 258Fm

when we use microscopic transport coef-

ficients but it is not enough to affect the

fission yield. With macroscopic trans-

port coefficients, no such fission events

are noted so far for 258Fm indicating that

it emerges only due to the use of micro-

scopic transport coefficients. We also note

that the trajectories for 236U occasionally

elongate as far as z0/R0 ≈ 3 with δ ≈ 0.2.

This means that the fragments in this fis-

sion events have a prolate shape associ-

ated with Brosa’s super-long fission modes. True enough as predicted by Brosa, this trajectory

also possesses symmetric mass fragments. This prolate and elongated shape also means that the

Coulomb repulsion between the fragments is weaker than both super-short and standard fission

modes.

The total kinetic energy (TKE) in our calculation is due to two contributions. The main contri-

butions are of course due to Coulomb repulsion. Additional contributions came from the kinetic

energy of the elongations itself just before scission and is often called pre-scission kinetic energy.

By taking a tally of the mass and TKE of the fragments for each fission events, we can obtain the

profile for 236U in Fig. 6a and if we do the same for 258Fm, we have Fig. 7. As we have noted

earlier, most 236U fission events are due to standard fission events that have an average kinetic en-

ergy of around 175 MeV. There are also some minor contributions from super-long fission modes

around 160 MeV, however with higher excitation energy the contributions from the super-long fis-

sion modes are increasing. We have also noted that in the case of 258Fm, the super-short fission

modes are most dominant and they have a kinetic energy around 230 MeV. The standard fission

modes are around 195 MeV for 258Fm but the contributions are very small.

The main advantages that we see in the use of Langevin calculation with microscopic transport

coefficients are the improvements towards the predictions of TKE with respect to increasing exci-
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tation energy. In Fig. 6b, we do not see any change in TKE as an excitation energy increases if

macroscopic transport coefficients are used in 3D-Langevin calculation. On the other hand, with

microscopic transport coefficients TKE not only decays with Ex as in experiment, it was also able

to show the effects of pairing at very low excitation energy. We have early indication showing

that further improvements may be achievable if better estimates of level density are available as

was demonstrated in the work by [37]. The success of 3D Langevin microscopic calculation in

predicting the TKE might be related to the dependence of microscopic transport coefficients on

temperature and we are still investigating how this is actually manifested in our calculations.

4. Final words

It is interesting to see the influence of fission modes on TKE. In our recently published results [7]

the average TKE of many nuclei seems to follow the Viola systematics pretty closely except for

a few nuclei such as the spontaneous fission of 258Fm among others. The only differences that

we can see between 258Fm and 236U that we can observe are the contributions of standard fission

modes to the average TKE. It can be argued that the standard fission modes are prevalent in most

nuclei, hence such systematics are a good measure on the systematics of standard fission modes.

Due to the lack of these fission modes in 258Fm, its TKE appears to be anomalously high. In future

work, we hope to study this subject further using the newly developed 4D Langevin calculation [8]

to improve our understanding of the phenomena.
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