5-B - 10 JAERI EVAL-MAR87 S.CHIBA DIST-MAY10 20090424 ----JENDL-4.0 MATERIAL 525 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT HISTORY 87-03 Newly evaluated by S.Chiba (jaeri) for JENDL-3. 88-11 Data for mf=3(mt=1,2,3,4,51,103,107,113,800,801) were modified. data for mf=12(mt=102,801), mf=13(mt=4,103), mf=14(mt=4,102,103,801) were added. Comment was also modified. 02-01 Compiled by K.Shibata for JENDL-3.3. 09-02 (n,t) reaction was modified by S. Chiba. 09-03 Compiled by S. Chiba for JENDL-4. ******** modifications for JENDL-3.3 ********************* (1,451) Updated. (3,251) Deleted. (4,2) Transformation matrix deleted. (12,801) Eg and Es were corrected. (33,1-801) Taken from JENDL-3.2 covariance file. ************************************************************ mf=1 General information mt=451 Descriptive data and dictionary mf=2 Resonance parameters mt=151 Scattering radius only. The 2200m/s and 14 MeV cross sections are in Table 1. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 3.8408E+03 Elastic 2.2543E+00 n,gamma 5.0005E-01 2.2510E-01 n,p 3.0003E-03 n,alpha 3.8373E+03 n,t2alpha 8.0298E-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. mf=3 Neutron cross sections mt=1 Total Below 1.2 MeV, sum of the partial cross sections. 1.2 to 17 MeV, based on the experimental data /1/-/9/. Above 17MeV, optical model calculation was normalized at 17 MeV. The spherical optical potential parameters/10/ are listed in Table 2. mt=2 Elastic scattering Below 10 keV, based on the R-matrix calculation. The R-matrix parameters are mainly based on ref./11/. 10 keV to 1.2 MeV, based on the experimental data /12/- /14/. Above 1.2 MeV, calculated by subtracting all the other partial cross sections from the total cross section. mt=3 Non-elastic Sum of mt=4, 16, 102, 103, 104, 107 and 113. mt=4 Total inelastic Sum of mt=51 to 89. mt=16 (n,2n) Based on the experimental data /15/. Cross section was extrapolated as 0.0120*sqrt(E-Eth), where E is incident neutron energy and Eth threshold energy in MeV. Note that this reaction produces 1 proton and 2 alpha particles, i.e. (n,2np)2alpha. mt=51-59, 61, 62, 64-66. Inelastic scattering to real levels Cross sections were calculated by the collective model DWBA and normalized to the experimental data/16/ at 14 MeV. Calculated levels and assumed orbital angular momentum transfers (l) are summarized in table 3. data for mt=51 was normalized to the experimental data/17/ below 6MeV. Above 6MeV, the deformation parameter deduced from (p,p') reaction/18/ was used. mt=60,63,67-89 (n,n'd)2alpha continuum. Represented by pseudo-levels, binned in 0.5 MeV intervals. The (n,n'd)2alpha cross section was based on the measurement of Frye+ /19/. The cross section for each level was calculated by the 3-body phase space distribution, assuming isotropic center-of-mass angular distributions. mt=102 Capture 1/v shape was normalized to the experimental data /20/. mt=103 (n,p) Sum of mt = 700 to 705. mt=104 (n,d) Sum of mt = 720 and 721. mt=107 (n,alpha) Sum of mt = 800 and 801. The thermal cross section of 3837 barns was adopted/21/. mt=113 (n,t)2alpha Based on the experimental data /19/,/22/-/29/. Feb. 2009 Modified by taking account of the resonant structure at the threshold region. The trion widths were calculated by the analytical continuation method (N. Itagaki), which yielded Gamma_t = 22 keV for 370 keV and 30 keV for 1890 keV resonance (L=2). The WKB penetration factor was applied to hinder the cross section for the first resonance. The thermal cross section was also slightly modified to take account of the recent experimental data (Kornilov et al., YK,(1),11,9004, EXFOR41053002 and 5). mt=600 (n,p) to the ground state of Be-10. Below 100 keV, assumed to be 1/v. the thermal cross section was assumed to be 3mb/30/. From 100 keV to 500 keV, assumed to be constant. From 500 keV to 1 MeV, linearly interpolated. Above 1 MeV, the statistical model calculation was normalized by a factor of 0.704. The optical potential, level schemes and level density parameters used in the calculation are summarized in Tables 2, 3 and 4. mt=601-605 (n,p) to the low lying excited states of Be-10. The statistical model calculation was normalized to the experimental data/26/ at 14 MeV. mt=650 (n,d0) Below 7.6 MeV, the inverse reaction cross sections/31/- /32/ were converted by the principle of detailed balance. From 7.6 to 14 MeV, interpolated linearly. Above 14 MeV, DWBA calculation with the proton pickup mechanism was normalized to the experimental data, /33/-/34/ at 14 MeV. The d + Be-9 and bound proton potentials of Valkovic+/34/ were used. Depth of the proton potential was searched by the separation energy method. the potential parameters are listed in Table 2. mt=651 (n,d2) DWBA calculation with the proton pickup mechanism was normalized to the experimental data/26/,/33/-/34/ at 14 MeV. This is really the (n,d) reaction to the second level of Be-9. mt=800, (n,alpha0) Below 10 keV, R-matrix calculation. From 10 keV to 800 keV, based on the experimental data /35/-/36/. From 800 keV to 7.5 MeV, the experimental data/37/ were normalized by a factor of 1.38 and fitted by the spline function. Above 7 MeV, the experimental data/26/ were adopted. mt=801 (n,alpha1) Below 10 keV, the R-matrix calculation. From 10 keV to 100 keV, based on the experimental data/36/ /38/. From 100 keV to 2 MeV, recommendation by Liskien and Wattecamps/39/ was adopted. From 2 to 7.5 MeV, the experimental data/37-40/ were normalized by a factor of 1.38 and fitted by the spline function. Above 7 MeV, the experimental data/40/ was adopted. mf=4 angular distributions of secondary neutrons mt=2 Below 100 keV, the R-matrix calculation. From 100 keV to 6 MeV, ENDF/B-V was adopted. Above 6 MeV, based on the optical model calculation. mt=16 Calculated by the method of Nakagawa/41/. Angular distributions are given in the laboratory system. mt=51-59, 61, 62, 64-66. DWBA calculation. mt=60, 63, 67-89 Assumed to be isotropic in cm. mf=5 Energy distribution of secondary neutrons mt=16 The evaporation model was assumed. the evaporation temperature was assumed to be 1 MeV at 14 MeV. it was extrapolated as t = 0.2673*sqrt(En) MeV, where En means the incident neutron energy in the laboratory system in MeV. mf=12 Photon multiplicities mt=102 Multiplicities were given according to a compilation of Ajzenberg et al./43/. However, they were normalized for the total secondary gamma-ray energy to match the available energy in the final state. mt=801 Multiplicity for the 0.479-MeV gamma-ray was given as 1.0. mf=13 Photon production cross sections mt=4 Experimental data/41,44/ were adopted for 0.4138-, 0.7183- and 1.0219-MeV gamma-rays. For 1.44- and 2.15-MeV gamma-rays, excitation function of the 0.4138-MeV gamma-ray production was normalized to the data/41/ at 14.8MeV. For 2.87-, 3.01-, 4.44- and 6.03-MeV gamma-rays, shapes of the corresponding (n,n') excitation functions in mf=3 were normalized to the data/41/ at 14.8MeV. mt=103 For 3.368- and 2.592-MeV gamma-rays, shapes of the corresponding (n,p) excitation functions in mf=3 were normalized to the experimental data/41/ at 14.8MeV. mf=14 Angular distribution of secondary photons mt=4,102,103,113, 801 Assumed to be isotropic. mf=33 Covariances of cross sections (ref. 46) mt=1 Below 1.2 MeV, constructed from mt=2, 102, 800 and 801. Above 1.2 MeV, based on experimaental data. a chi-value was 2.186. mt=2 Below 1.2 MeV, based on experimental data. Above 1.2 MeV, constructed from mt=1, 102, 800 and 801. mt=102 Based on experimental data. mt=107 Constructed from mt=800 and 801. mt=800 Based on experimental data. A chi-value was 1.203. mt=801 Based on experimental data. A chi-value was 1.913. References 1) Auchampaugh,G.F. et al.: Nucl. Sci. Eng. 69,30(1979). 2) Cook,C.E. et al.: Phys. Rev. 94, 651(1954). 3) Tsukada,K.: EXFOR 20324,003(1963). 4) Coon,J.H. et al.: Phys.Rev. 88, 562(1952). 5) Fossan,D.B. et al.: Phys.Rev. 123, 209(1961). 6) Cookson,J.A. et al.: Nucl. Phys. A146, 417(1970). 7) Nereson,N.G. et al.: LA-1655(1954). 8) Becker,R.L. et al.: Phys.Rev. 102, 1384(1956). 9) Bockelman,C.K. et al.: Phys. Rev. 84, 69(1951). 10) Dave,J.H. et al.: Phys.Rev. C28,2112(1983). 11) Hausladen,S.L. et al.: Nucl.Phys. A217,563(1973). 12) Asami,A. et al.: J.Nucl.Energ. 24, 85(1970). 13) Lane,R.O. et al.: Phys. Rev. C4, 380(1971). 14) Willard,H.B. et al.: Phys. Rev. 98,669(1958). 15) Mather,D.S.: AWRE-O-47/69(1969). 16) Vaucher,B. et al.: Helv. Phys. Acta 43, 237(1970). 17) Porter D.: AWRE-O-45/70(1970) 18) Swiniarski, R.D. et al.: Helv. Phys. Acta 49, 227(1976). 19) Frye,G.M. et al.: Phys.Rev. 103, 328(1956). 20) Batholomew,G.A. et al.: Can.J.Phys. 35, 1347(1957). 21) Mughabghab,S.F. et al.: 'Neutron Cross Sections', Vol.1 Part A (Academic Press 1981, New York) 22) Wyman,M.E. et al.: Phys.Rev. 112, 1264(1958). 23) Klein,P.D. et al.: EXFOR 12654,002(1966). 24) Antolkovic,B. et al.: Nucl.Phys. A139, 10(1969). 25) Valkovic,V. et al: Nucl.Phys. A98, 305(1967). 26) Sellem,C. et al.: Nucl.Instrum.Meth. 128, 495(1975). 27) Cserpak,F. et al.: EXFOR 30474,003(1978). 28) Suhaimi,A. et al.: Radiochimica Acta 40, 113(1986). 29) Qaim,S.M. et al.: Proc. Int. Conf. Nucl. Data for Sci. and Technol., Mito, May 30 - June 3, 1988. 30) Eggler,et al. : In CINDA-A (1935-1976) Vol.1 (1979) 31) Bardes,R. et al.: Phys.Rev. 120, 1369(1960). 32) Siemssen,R.H. et al.: Nucl.Phys. 69, 209(1965). 33) Ribe,F.L. et al.: Phys.Rev. 94, 934(1954). 34) Valkovic,V. et al.: Phys.Rev. 139, B331(1965). 35) Olson,M.D. et al.: Phys.Rev. C30, 1375(1984). 36) Sealock,R.M. et al.: Phys.Rev. C13, 2149(1976). 37) Davis,E.A. et al.: Nucl.Phys. 27, 448(1961). 38) Schrack,R.A. et al.: Nucl.Sci.Eng. 68, 189(1978). 39) Liskien,H. and Wattecamps, E.: Nucl.Sci.Eng. 68, 132(1978). 40) Viesti,G. et al.: Annals Nucl. Energ. 6, 13(1979). 41) Nellis R.O.: Phys.Rev. C1, 847(1970). 42) Nakagawa,T.: JAERI-M 84-103(1984) 43) Ajzenberg S.: Nucl.Phys. A248, 1(1975). 44) Dickens et al. : Proc. Int. Conf. Nucl. Data for Sci. & Technol., May 30- June 3, 1988, Mito, Japan. 45) Watson,B.A. et al: Phys. Rev. 182, 977(1969) 46) Shibata, K, et al.: JAERI-Research 98-045 (1998). Table 1 The 2200-m/s and 14 mev cross sections ---------------------------------------------------- 2200-m/s (b) 14 MeV (b) ---------------------------------------------------- elastic 2.144 0.943 (n,n') ----- 0.269 (n,p) 0.003 0.038 (n,d) ----- 0.047 (n,t) 0.012 0.095 (n,alpha) 3837.0 0.049 (n,2n) ----- 0.027 capture 0.50 0.000 total 3839.7 1.467 ---------------------------------------------------- Table 2 Optical potential parameters ------------------------------------------------------------- B-10 + n /10/ V= 47.91 - 0.346En, Ws= 0.657 + 0.810En, Vso=5.5 (MeV) r= 1.387 , rs= 1.336 , rso=1.15 (fm) a= 0.464 , as= 0.278 , aso=0.5 (fm) Be-10 + p /45/ V = 60.0 + 27.0(N-Z)/A -0.3Ecm (MeV) Ws = 0.64Ecm + 10.0(N-Z)/A ,(Ecm < 13.8 MeV) (MeV) = 9.60-0.06Ecm + 10.0(N-Z)/A ,(Ecm > 13.8 MeV) (MeV) Vso= 5.5 (MeV) r = rs = rso = 1.15 (fm) a = aso = 0.57, as= 0.5 (fm) Be-9 + d /34/ V= 80.0 , Wv= 30.0 , Vso=6.0 (MeV) r= 1.0 , rv= 1.0 , rso=1.0 ,rc= 1.3 (fm) a= 1.0 , av= 0.8 , aso=1.0 (fm) ------------------------------------------------------------- Table 3 Level schemes used in the DWBA or statistical model calculation --------------------------------------------------- B-10 Be-10 --------------------------------------------------- mt energy Jp L mt energy Jp ( MeV ) ( MeV ) 2 0.0 3+ 700 0.0 0+ 51 0.7183 1+ 2 701 3.368 2+ 52 1.7402 0+ 4 702 5.958 2+ 53 2.154 1+ 2 703 5.960 1- 54 3.587 2+ 2 704 6.179 0+ 55 4.774 3+ 2 705 6.263 2- 56 5.110 2- 3 57 5.163 2+ 2 58 5.18 1+ 2 59 5.920 2+ 2 61 6.025 4+ 2 62 6.127 3- 3 64 6.561 3+ 2 65 6.881 1- 3 66 7.00 1+ 2 7.430 1- 7.470 1+ 7.477 2- 7.560 0+ 7.670 1+ 7.840 1- 8.070 2- 8.650 1+ 8.890 3- 8.894 2+ --------------------------------------------------- Table 4 Level density parameters used in the statistical model calculation ---------------------------------------------------------------- a(1/MeV) t(MeV) c(1/MeV) pair.(MeV) Ex(MeV) ---------------------------------------------------------------- B-10 1.196 5.581 0.066 0.0 16.17 Be-10 1.088 5.866 0.021 5.13 19.63 -----------------------------------------------------------------