49-In-113 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+ DIST-MAY10 20100316 ----JENDL-4.0 MATERIAL 4925 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 Re-evaluation was performed for JENDL-4.0 10-03 Compiled by S.Kunieda MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters - Resolved resonance region (MLBW formula): below 830 eV In JENDL-3.3, resonance parameters were based on Mughabghab et al./1/ Total spin j of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum l of some resonances was estimated with a method of Bollinger and Thomas/2/. Averaged radiation width and scattering radius were taken from Mughabghab et al. In JENDL-4, the data for 25 - 467 eV were replaced with the ones obtained by Frankle et al./3/ A value of 75 meV were assumed for the radiation with in this range. The total spin J for 25.0, 32.23, 70.3 and 91.6 eV were determiend by considering the work of Georgiev et al./4/ The remaining J values were estimated by a random number method. The resonances at 276.8 and 304.3-eV given in JENDL-3.3 were removed. - Unresolved resonance region: 830 eV - 300 keV The parameters were obtained by fitting to the total and capture cross sections calculated by the POD code /5/. The ASREP code /6/ was employed in this evaluation. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections & resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.57853E+01 Elastic 3.69864E+00 n,gamma 1.20866E+01 3.25355E+02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section The OPTMAN /7/ & POD /5/ calculations. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT= 4,51-91 (n,n') cross section The OPTMAN /7/ & POD /5/ calculations. MT= 16 (n,2n) cross section MT= 17 (n,3n) cross section MT= 22 (n,na) cross section MT= 28 (n,np) cross section MT= 32 (n,nd) cross section Calculated by the POD code /5/. MT=102 Capture cross section Calculated by the POD code /5/. The value of gamma-ray strength function was set to the recomendation value by Mughabghab /8/. MT=103 (n,p) cross section MT=104 (n,d) cross section MT=105 (n,t) cross section MT=106 (n,He3) cross section MT=107 (n,a) cross section Calculated by the POD code /5/. MT=203 (n,xp) cross section Sum of (n,np) and (n,p) MT=204 (n,xd) cross section Sum of (n,nd) and (n,d) MT=205 (n,xt) cross section MT=206 (n,xHe3) cross section Calculated by the POD code /5/. MT=207 (n,xa) cross section Sum of (n,na) and (n,a) MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering The OPTMAN /7/ & POD /5/ calculations. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction MT= 17 (n,3n) reaction MT= 22 (n,na) reaction MT= 28 (n,np) reaction MT= 32 (n,nd) reaction Neutron spectra calculated by the POD code /5/. MT= 51-90 (n,n') reaction Neutron angular distributions calculated by OPTMAN /7/ & POD /5/. MT= 91 (n,n') reaction Neutron spectra calculated by the POD code /5/. MT= 203 (n,xp) reaction MT= 204 (n,xd) reaction MT= 205 (n,xt) reaction MT= 206 (n,xHe3) reaction MT= 207 (n,xa) reaction Light-ion spectra calculated by the POD code /6/. MF=12 Gamma-ray multiplicities MT= 3 Non-elastic gamma emission Calculated by the POD code /5/. MF=14 Gamma-ray angular distributions MT= 3 Non-elastic gamma emission Assumed to be isotropic. MF=15 Gamma-ray spectra MT= 3 Non-elastic gamma emission Calculated by the POD code /5/.*************************************************************** * Nuclear Model Calculations with POD Code /5/ * *************************************************************** 1. Theoretical models The POD code is based on the spherical optical model, the distorted-wave Born approximaiton (DWBA), one-component exciton preequilibrium model, and the Hauser-Feshbach-Moldauer statis- tical model. With the preequilibrium model, semi-empirical pickup and knockout process can be taken into account for composite-particle emission. The gamma-ray emission from the compound nucleus can be calculated within the framework of the exciton model. The code is capable of reading in particle transmission coefficients calculated by separate spherical or coupled-channel optical model code. In this evaluation, the OPTMAN code /7/ was employed for neutrons, while the ECIS code /9/ was adopted for charged particles. 2. Optical model & parameters Neutrons: Model: Coupled-channel model based on the rigid-rotor model OMP : Based on the Coupled-channel optical potential /10/ The original Parameters were slightly modified as listed below to give a precise reaction cross sections. ------------------------------------------------------------ - Real-volume term VR0= -3.80E+1 MeV VR1= 2.70E-2 MeV VR2= 1.20E-4 MeV VR3= 3.50E-7 MeV VRLA= 9.49E+1 MeV ALAVR= 4.30E-3 r= 1.21E+0 a= 6.54E-1 - Imaginary-surface term WDBW= 1.35E+1 MeV WDWID= 1.40E+1 MeV ALAWD= 1.40E-2 r= 1.21E+0 a= 6.54E-1 - Imaginary-volume term WCBW= 1.70E+1 MeV WCWID= 1.01E+2 MeV r= 1.21E+0 a= 6.54E-1 - Spin-orbit term VS= 6.26E+0 MeV ALASO= 5.00E-3 WSBW= -3.10E+0 MeV WSWID= 1.60E+2 MeV r= 1.05E+0 a= 5.90E-1 - Isospin coefficients CISO= 2.43E+1 WCISO= 1.80E+1 CCOUL= 9.00E-1 - Deformation parameter Beta2= -1.20E-1 ------------------------------------------------------------ Protons: Model: Spherical OMP : Koning and Delaroche /11/ Deuterons: Model: Spherical OMP : Bojowald et al. /12/ Tritons: Mode: Spherical OMP : Becchetti and Greenlees /13/ He-3: Model: Spherical OMP : Becchetti and Greenlees /13/ Alphas: Model: Spherical OMP : A simplified folding model potential /14/ (The nucleon OMP was taken from Ref./10/.) 3. Level scheme of In-113 ------------------------------------ No. Ex(MeV) J PI CC ------------------------------------ 0 0.00000 9/2 + * 1 0.39169 1/2 - 2 0.64676 3/2 - 3 1.02425 5/2 + 4 1.02971 3/2 + 5 1.06416 3/2 + 6 1.10636 5/2 - 7 1.13146 5/2 + 8 1.17310 11/2 + * 9 1.19107 7/2 + ------------------------------------ Levels above 1.20107 MeV are assumed to be continuous. 4. Level density parameters Energy-dependent parameters of Mengoni-Nakajima /15/ were used ---------------------------------------------------------- Nuclei a* Pair Esh T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV ---------------------------------------------------------- In-114 14.275 0.000 2.256 0.601 -1.368 4.328 0.642 In-113 16.000 1.129 2.058 0.584 -0.576 5.783 1.191 In-112 14.064 0.000 1.668 0.779 -3.108 7.332 0.676 In-111 13.420 1.139 1.285 0.824 -2.020 8.763 1.935 Cd-113 14.918 1.129 2.940 0.622 -0.905 6.375 1.352 Cd-112 14.435 2.268 2.419 0.735 -0.781 9.301 2.649 Cd-111 14.779 1.139 2.384 0.681 -1.366 7.239 1.341 Ag-111 13.420 1.139 3.581 0.725 -1.706 7.873 1.277 Ag-110 14.571 0.000 3.382 0.622 -2.061 5.263 0.337 Ag-109 13.214 1.149 2.966 0.745 -1.615 7.875 0.870 ---------------------------------------------------------- The value of a* for In-113 was slightly changed from the original value. 5. Gamma-ray strength functions M1, E2: Standard Lorentzian (SLO) E1 : Generalized Lorentzian (GLO) /16/ 6. Preequilibrium process Preequilibrium is on for n, p, d, t, He-3, and alpha. Preequilibrium capture is on. References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968). 3) Frankle, C.M. et al.: Phys. Rev., C48, 1601 (1993). 4) Georgiev, G.P. et al.: JINR-E3-95-307, p170 (1995). 5) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007). 6) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999) [in Japanese]. 7) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005). 8) S.F.Mughabghab, "Atlas of Neutron Resonances", Elsevier (2006). 9) J.Raynal, CEA Saclay report, CEA-N-2772 (1994). 10) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 11) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 12) Bojowald et al., Phys. Rev. C 38, 1153 (1988). 13) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization Phenomena in Nuclear Reactions," p.682, The University of Wisconsin Press (1971). 14) D.G.Madland, NEANDC-245 (1988), p. 103. 15) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994). 16) M.Brink, Ph.D thesis, Oxford University, 1955.