94-Pu-239

 94-Pu-239 JAEA+      EVAL-DEC09 O.Iwamoto,N.Otuka,S.Chiba,+      
                      DIST-MAY10                       20100325   
----JENDL-4.0         MATERIAL 9437                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
07-03 Data were calculated with CCONE code.                       
07-06 Fission spectrum was revised.                               
07-07 Theoretical calculation was made with CCONE code.           
07-08 Theoretical calculation was made with CCONE code.           
07-11 Fission cross section was revised with simultaneous         
      evaluation.                                                 
07-12 Fission cross section was revised with a new result of      
      simultaneous evaluation.                                    
08-01 Fission cross section and resonance parameters were         
      revised. New CCONE calculation was adopted.                 
08-02 Re-calculated with CCONE code. Fission cross section and    
      nu-p were revised.                                          
08-03 nu-p was revised.                                           
      Interpolation of (5,18) was changed.                        
      Data were compiled as JENDL/AC-2008/1/.                     
09-08 (MF1,MT458) was evaluated.                                  
09-10 nu-p and fission cross section were revised.                
09-12 nu-p was revised.                                           
10-03 Covariance data were given.                                 
                                                                  
                                                                  
MF= 1 General information                                         
  MT=452 Number of Neutrons per fission                           
    Sum of MT=455 and 456                                         
                                                                  
  MT=455 Delayed neutrons                                         
    (same as JENDL-3.3/2/)                                        
    Evaluated data by Tuttle/3/ were adopted.                     
    Decay constants were adopted from Keepin et al./4/            
                                                                  
  MT=456 Number of prompt neutrons per fission                    
    Below 20 eV:                                                  
      Determined from experimental data of Gwin et al./5/         
      reducing by 0.1%. Standard Cf-252 sf nu-p was taken to be   
      3.756.                                                      
                                                                  
    40 -  500 eV:                                                 
      Determined from experimental data of Frehaut et al./6/,     
      Gwin et al./7, 5/                                           
                                                                  
    500 eV - 20 keV:                                              
      Determined from experimental data of Gwin et al./7, 8/      
                                                                  
    Above 20 keV:                                                 
      Experimental data were anlyzed by the GMA code/9/ with      
      the Chiba and Smith approach/10/ for PPP minimization.      
      Experimental data were renormalized with nu-p of Cf-252     
      spontaneous fission (3.756+/-0.031) reported by Vorobyev et 
      al./11/ if standards to derive original data were known.    
                                                                  
      Experimental data sets are summarized below.                
    r: re-normalized by nu-p(Cf-252 spon) of A.S.Vorobyev et al.  
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
        30600.002  1.86E+5 - 1.44E+6  H.Q.Zhang+        /12/      
     r  21135.007  9.90E+5 - 4.02E+6  D.S.Mather+       /13/      
     r  12326.006  2.50E+5 - 1.45E+7  J.C.Hopkins+      /14/      
        21696.006  1.41E+7            I.Johnstone       /15/      
        21685.004  2.28E+7 - 2.83E+7  J.Frehaut         /16/      
        13101.004  5.50E+2 - 9.50E+6  R.Gwin+           /8/       
        10759.004  5.60E+2 - 6.80E+6  R.Gwin+           /7/       
        20453.003  5.50E+5 - 8.50E+5  D.S.Mather+       /17/      
        20453.002  7.75E+4 - 1.15E+6  D.S.Mather+       /17/      
    --------------------------------------------------------------
                                                                  
    Slight modification was made for JENDL-4.0 in the energy      
    range from 1 keV to 4 MeV.                                    
                                                                  
  MT=458 Components of energy release due to fission              
    Total energy and prompt energy were calculated from mass      
    balance using JENDL-4 fission yields data and mass excess     
    evaluation. Mass excess values were from Audi's 2009          
    evaluation/18/. Delayed energy values were calculated from    
    the energy release for infinite irradiation using JENDL FP    
    Decay Data File 2000 and JENDL-4 yields data. For delayed     
    neutron energy, as the JENDL FP Decay Data File 2000/19/ does 
    not include average neutron energy values, the average values 
    were calculated using the formula shown in the report by      
    T.R. England/20/. The fractions of prompt energy were         
    calculated using the fractions of Sher's evaluation/21/ when  
    they were provided. When the fractions were not given by Sher,
    averaged fractions were used.                                 
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
  MT=151                                                          
  Resolved resonance parameters (RM: below 2.5 keV)               
    Parameters were evaluated by Derrien/22/.                     
                                                                  
  Unresolved resonance parameters (2.5 keV - 30 keV)              
    The energy dependent S0, S1 and fission width were determined 
    with ASREP code/23/ so as to reproduce the evaluated total,   
    capture and fission cross sections. The parameters are used   
    only for self-shielding calculations.                         
                                                                  
                                                                  
     Thermal cross sections and resonance integrals (at 300K)     
    -------------------------------------------------------       
                    0.0253 eV    reson. integ.(*)                 
                     (barns)       (barns)                        
    -------------------------------------------------------       
    total            1027.40                                      
    elastic             8.82                                      
    fission           742.76        301                           
    capture           275.82        180                           
   -------------------------------------------------------        
         (*) In the energy range from 0.5 eV to 10 MeV.           
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
  Cross sections above the resolved resonance region except for   
  the elastic scattering (MT=2) and fission cross sections (MT=18,
  19, 20, 21, 38) were calculated with CCONE code/24/.            
  The model parameters were determined by considering integral    
  data as well as measured total, (n,2n) and capture cross        
  sections, and fission cross section of JENDL-3.3.               
                                                                  
  MT= 1 Total cross section                                       
    The cross section was calculated with CC OMP of Soukhovitskii 
    et al./25/ The OMPs were modified based on the experimental   
    data of Harvey et al./26/ and Poenitz et al./27,28/           
                                                                  
  MT=2 Elastic scattering cross section                           
    Calculated as total - non-elstic scattering cross sections    
                                                                  
  MT=16 (n,2n) cross section                                      
    Calculated with CCONE code. The experimental data of Becker   
    et al./29/ and Lougheed et al./30/ were used to               
    determine the model parameters in the CCONE calculation.      
                                                                  
  MT=18 Fission cross section                                     
    Below 10 keV, JENDL-3.3/2/ was adopted, which was based on    
    measurements of ref./31/ and ref./32/.                        
                                                                  
    Above, 10 keV, experimental data measured after 1960 were     
    analyzed in the present work by simultaneous fitting of U-    
    233, U-235, U-238, Pu-239, Pu-240 and Pu-241 fission cross    
    sections and their ratios by the SOK code /33/.               
                                                                  
    --------------------------------------------------------------
     Cross section                                                
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
        22304.009  1.47E+7            K.Merla+          /34/      
        22304.005  4.90E+6 - 1.88E+7  K.Merla+          /34/      
        12877.005  5.05E+3 - 2.05E+5  L.W.Weston+       /35/      
        30670.002  1.00E+6 - 5.60E+6  X.J.Zhou+         /36/      
        30634.003  1.47E+7            J.W.Li+           /37/      
        12826.003  1.46E+7            M.Mahdavi+        /38/      
        40487.003  5.50E+3 - 9.50E+4  Ju.V.Rjabov       /39/      
        20779.005  1.39E+7 - 1.46E+7  M.Cance+          /40/      
        10314.003  1.40E+5 - 9.64E+5  M.C.Davis+        /41/      
        20618.003  2.35E+6 - 5.53E+6  I.Szabo+          /42/      
        20570.003  8.05E+5 - 2.61E+6  I.Szabo+          /42/      
        20567.003  3.50E+4 - 9.72E+5  I.Szabo+          /42/      
        20001.002  5.05E+3 - 3.05E+4  J.Blons           /43/      
        20002.002  5.05E+3 - 2.95E+4  B.H.Patrick+      /44/      
        10267.002  5.50E+3 - 1.50E+5  R.Gwin+           /45/      
        40927.006  1.92E+6            I.D.Alkhazov+     /46/      
    --------------------------------------------------------------
                                                                  
     Ratio to U-235(n,f) cross section                            
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
        41455.005  5.77E+5 - 2.94E+7  O.A.Shcherbakov+  /47/      
        13801.002  8.50E+5 - 2.95E+7  P.Staples+        /48/      
        13134.009  1.47E+7            J.W.Meadows       /49/      
        30588.005  1.35E+7 - 1.48E+7  M.Varnagy+        /50/      
        10562.002  5.00E+3 - 2.96E+7  G.W.Carlson+      /51/      
        40824.003  2.40E+4 - 7.40E+6  B.I.Fursov+       /52/      
        40824.002  3.20E+5 - 7.00E+6  B.I.Fursov+       /52/      
        20569.004  1.15E+4 - 1.99E+5  I.Szabo+          /42/      
        20409.003  3.92E+5 - 2.09E+7  S.Cierjacks+      /53/      
        20428.004  5.50E+3 - 9.50E+5  D.B.Gayther       /54/      
        10253.002  3.00E+4 - 5.49E+6  W.P.Poenitz       /55/      
        20363.003  5.20E+3 - 1.01E+6  E.Pfletschinger+  /56/      
        10086.004  1.50E+5 - 1.40E+6  W.P.Poenitz       /57/      
        -----.---  5.00E+5 - 2.96E+7  P.W.Lisowski+     /58/      
    --------------------------------------------------------------
                                                                  
   Thus obtained fission cross section was further modified by    
   multiplying a factor of 1.003 in the energy range from 2.5 keV 
   to 5 MeV. The data in the 7-8 MeV region were also modified.   
                                                                  
                                                                  
  MT=19, 20, 21, 38 Multi-chance fission cross sections           
    Calculated with CCONE code, and renormalized to the total     
    fission cross section (MT=18).                                
                                                                  
  MT=102 Capture cross section                                    
    Calculated with CCONE code. The experimental data of          
    Schomberg et al./59/, Chelnokov et al./60/, Gwin et al./45/,  
    Kononov et al./61/ and Hopkins and Diven/62/ were used to     
    determine the model parameters in the CCONE calculation.      
                                                                  
                                                                  
MF= 4 Angular distributions of secondary neutrons                 
  MT=2 Elastic scattering                                         
    Calculated with CCONE code.                                   
                                                                  
  MT=18 Fission                                                   
    Isotropic distributions in the laboratory system were assumed.
                                                                  
                                                                  
MF=5  Energy distributions of secondary neutrons                  
  MT=18 Prompt fission neutrons                                   
    Below 5 MeV, data of JENDL-3.3/2/ were adopted.               
    Comment of JENDL-3.3:                                         
    * Distributions were calculated with a modified Madland-Nix   
      model with consideration for multimodal nature of the       
      fission process/63,64/. The compound nucleus formation      
      cross sections for fission fragments were calculated using  
      Becchetti-Greenlees potential/65/. Up to 3rd-chance-fission 
      were considered at high incident neutron energies.          
      Parameters adopted for thermal-neutron fission/64/:         
         (S1: standard-1, S2: standard-2, S3: standard-3 modes)   
        total average fragment kinetic energy                     
                                        = 190.4 MeV for S1        
                                        = 174.2 MeV for S2        
                                        = 164.2 MeV for S3        
        average energy release          = 205.400 MeV for S1      
                                        = 196.279 MeV for S2      
                                        = 182.123 MeV for S3      
        average mass number of light FF = 105 for S1              
                                        =  99 for S2              
                                        =  83 for s3              
        average mass number of heavy FF = 135 for S1              
                                        = 141 for S2              
                                        = 157 for s3              
        level density of the light FF   = 11.236(S1),             
                                          10.764(S2), 6.669(S3)   
        level density of the heavy FF   = 9.577(S1),              
                                          13.104(S1),16.284(S3)   
        mode branching ratio = 0.248(S1), 0.742(S2), 0.01(S3)     
      These data are essentially based on Schillebeeckx et        
      al./66/.                                                    
                                                                  
      Note that the parameters vary with the incident energy.     
      Energy-dependent mode branching ratio data of Brosa et      
      al./67/ was used.                                           
                                                                  
    Above 5.5 MeV, spectra were calculated with CCONE code/24/.   
                                                                  
  MT=455                                                          
    (same as JENDL-3.3)                                           
    Taken from Brady and England /68/. Group abundance parameters 
    were adjusted so as to reproduce total delayed neutron        
    emission rate measured by Keepin et al./4/, Besant et al.     
    /69/ and Maksyutenko/70/                                      
                                                                  
                                                                  
MF= 6 Energy-angle distributions                                  
    Calculated with CCONE code.                                   
    Distributions from fission (MT=18) are not included.          
                                                                  
                                                                  
MF=12 Photon production multiplicities and transition             
      probability arrays                                          
  MT=18  Fission                                                  
    (same as JENDL-3.3)                                           
    Stored under option-1 (multiplicities).  The thermal neutron  
    induced fission gamma spectrum measured by Verbinski et       
    al./71/ was adopted and used up to 20 MeV neutron.  Since     
    no data were given for the photons below 0.14 MeV, it was     
    assumed to be the same as that of the photons between 0.14    
    and 0.3 MeV.                                                  
                                                                  
                                                                  
MF=14 Photon angular distributions                                
  MT=18                                                           
    Isotropic distributions were assumed.                         
                                                                  
                                                                  
MF=15  Continuous photon energy spectra                           
  MT=18                                                           
    (same as JENDL-3.3)                                           
    Experimental data by Verbinski et al./71/ were adopted.       
                                                                  
                                                                  
MF=31 Covariances of average number of neutrons per fission       
  MT=452 Number of neutrons per fission                           
    Combination of covariances for MT=455 and MT=456.             
                                                                  
  MT=455 Number of delayed neutrons per fission                   
    (same as JENDL-3.3/2/)                                        
                                                                  
  MT=456 Number of prompt neutrons per fission                    
    Below 500 eV, the same covariance as JENDL-3.3 was adopted.   
    Above 500 eV, covariance was obtained by GMA fitting to the   
    experimental data of nu-p (see MF=1,MT=456).                  
                                                                  
                                                                  
MF=33 Covariances of neutron cross sections                       
  Covariances were given to all the cross sections by using       
  KALMAN code/72/ and the covariances of model parameters         
  used in the theoretical calculations.                           
                                                                  
  For the following cross sections, covariances were determined   
  by different methods.                                           
                                                                  
  MT=1, 2 Total and elastic scattering                            
    In the energy region up to 2.0 keV, covariances were          
    calculated from the covariances of resonance parameters/73/.  
    From 2 to 2.5 keV, uncertaintes were assumed to be 3% for     
    the total, and 4% for elastic scattering cross sections.      
                                                                  
    Above 2.5 keV, the covariances for CCONE calculation were     
    adopted.                                                      
                                                                  
  MT=18 Fission cross section                                     
    Below 2.0 keV, covariances were calculated from the           
    covariances of resonance parameters/73/. From 2 to 9 keV,     
    uncertaintes were assumed to be 2.5%.                         
                                                                  
    Above 9 keV, covariance matrix was obtained by simultaneous   
    evaluation among the fission cross sections of U-233, U-235,  
    U-238, Pu-239, Pu-240 and Pu-241(See MF=3, MT=18, and /1/).   
    Since the variances are very small, they were adopted by      
    multiplying a factor of 2.                                    
                                                                  
  MT=102 Capture cross section                                    
    Below 2.0 keV, covariances were calculated from the           
    covariances of resonance parameters/73/. From 2 to 2.5 keV,   
    uncertaintes were assumed to be 5 %.                          
                                                                  
    Above 2.5 keV, covariances were obtained with CCONE and       
    KALMAN codes/72/.                                             
                                                                  
                                                                  
MF=34 Covariances for Angular Distributions                       
  MT=2 Elastic scattering                                         
    Covariances were given only to P1 components.                 
                                                                  
                                                                  
MF=35 Covariances for Energy Distributions                        
  MT=18 Fission spectra                                           
    Below 5 MeV, based on the JENDL-3.3 data.                     
    Above 5 MeV, covariances were estimated with CCONE and        
    KALMAN codes.                                                 
                                                                  
                                                                  
***************************************************************** 
  Calculation with CCONE code                                     
***************************************************************** 
                                                                  
  Models and parameters used in the CCONE/24/ calculation         
  1) Coupled channel optical model                                
     Levels in the rotational band were included. Optical model   
     potential and coupled levels are shown in Table 1.           
                                                                  
  2) Two-component exciton model/74/                              
    * Global parametrization of Koning-Duijvestijn/75/            
      was used.                                                   
    * Gamma emission channel/76/ was added to simulate direct     
      and semi-direct capture reaction.                           
                                                                  
  3) Hauser-Feshbach statistical model                            
    * Moldauer width fluctuation correction/77/ was included.     
    * Neutron, gamma and fission decay channel were included.     
    * Transmission coefficients of neutrons were taken from       
      coupled channel calculation in Table 1.                     
    * The level scheme of the target is shown in Table 2.         
    * Level density formula of constant temperature and Fermi-gas 
      model were used with shell energy correction and collective 
      enhancement factor. Parameters are shown in Table 3.        
    * Fission channel:                                            
      Double humped fission barriers were assumed.                
      Fission barrier penetrabilities were calculated with        
      Hill-Wheler formula/78/. Fission barrier parameters were    
      shown in Table 4. Transition state model was used and       
      continuum levels are assumed above the saddles. The level   
      density parameters for inner and outer saddles are shown in 
      Tables 5 and 6, respectively.                               
    * Gamma-ray strength function of Kopecky et al/79/,/80/       
      was used. The prameters are shown in Table 7.               
                                                                  
                                                                  
------------------------------------------------------------------
                              Tables                              
------------------------------------------------------------------
                                                                  
Table 1. Coupled channel calculation                              
  --------------------------------------------------              
  * rigid rotor model was applied                                 
  * coupled levels = 0,1,2,3,4,5,7,9 (see Table 2)                
  * optical potential parameters /25/                             
    Volume:                                                       
      V_0       = 50.054   MeV                                    
      lambda_HF = 0.01004  1/MeV                                  
      C_viso    = 15.9     MeV                                    
      A_v       = 12.04    MeV                                    
      B_v       = 81.36    MeV                                    
      E_a       = 385      MeV                                    
      r_v       = 1.2568   fm                                     
      a_v       = 0.633    fm                                     
    Surface:                                                      
      W_0       = 17.1463  MeV                                    
      B_s       = 11.19    MeV                                    
      C_s       = 0.01361  1/MeV                                  
      C_wiso    = 23.5     MeV                                    
      r_s       = 1.1803   fm                                     
      a_s       = 0.601    fm                                     
    Spin-orbit:                                                   
      V_so      = 5.75     MeV                                    
      lambda_so = 0.005    1/MeV                                  
      W_so      = -3.1     MeV                                    
      B_so      = 160      MeV                                    
      r_so      = 1.1214   fm                                     
      a_so      = 0.59     fm                                     
    Coulomb:                                                      
      C_coul    = 1.3                                             
      r_c       = 1.2452   fm                                     
      a_c       = 0.545    fm                                     
    Deformation:                                                  
      beta_2    = 0.227635                                        
      beta_4    = 0.06501                                         
      beta_6    = -0.01837                                        
                                                                  
  * Calculated strength function                                  
    S0= 1.09e-4 S1= 2.54e-4 R'=  9.31 fm (En=1 keV)               
  --------------------------------------------------              
                                                                  
Table 2. Level Scheme of Pu-239                                   
  -------------------                                             
  No.  Ex(MeV)   J PI                                             
  -------------------                                             
   0  0.00000  1/2 +  *                                           
   1  0.00786  3/2 +  *                                           
   2  0.05727  5/2 +  *                                           
   3  0.07570  7/2 +  *                                           
   4  0.16376  9/2 +  *                                           
   5  0.19280 11/2 +  *                                           
   6  0.28546  5/2 +                                              
   7  0.31850 13/2 +  *                                           
   8  0.33012  7/2 +                                              
   9  0.35810 15/2 +  *                                           
  10  0.38742  9/2 +                                              
  11  0.39158  7/2 -                                              
  12  0.43400  9/2 -                                              
  13  0.46200 11/2 +                                              
  14  0.46980  1/2 -                                              
  15  0.48700 11/2 -                                              
  16  0.49210  3/2 -                                              
  17  0.50560  5/2 -                                              
  18  0.51184  7/2 +                                              
  19  0.51930 17/2 +                                              
  20  0.53800  7/2 +                                              
  21  0.55620  7/2 -                                              
  22  0.56500  9/2 +                                              
  23  0.57060 19/2 +                                              
  24  0.58300  9/2 -                                              
  25  0.62000 15/2 -                                              
  26  0.63400 11/2 +                                              
  27  0.66110 11/2 -                                              
  28  0.71600 13/2 -                                              
  29  0.75250  1/2 +                                              
  30  0.75600 11/2 -                                              
  -------------------                                             
  *) Coupled levels in CC calculation                             
                                                                  
Table 3. Level density parameters                                 
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
   Pu-240 18.5472  1.5492  2.1440  0.3862 -0.0888  3.7864         
   Pu-239 18.4808  0.7762  1.8503  0.3551 -0.4969  2.5616         
   Pu-238 18.4143  1.5557  1.9652  0.3796  0.0313  3.6576         
   Pu-237 18.3478  0.7795  1.8799  0.3578 -0.5058  2.5825         
   Pu-236 18.2812  1.5623  1.9752  0.3731  0.1229  3.5604         
  --------------------------------------------------------        
                                                                  
Table 4. Fission barrier parameters                               
  ----------------------------------------                        
  Nuclide     V_A    hw_A     V_B    hw_B                         
              MeV     MeV     MeV     MeV                         
  ----------------------------------------                        
   Pu-240   6.250   1.040   5.000   0.600                         
   Pu-239   5.750   0.700   5.550   0.600                         
   Pu-238   5.400   0.700   5.100   0.600                         
   Pu-237   5.800   0.800   5.800   0.520                         
   Pu-236   6.000   1.040   5.000   0.600                         
  ----------------------------------------                        
                                                                  
Table 5. Level density above inner saddle                         
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
   Pu-240 20.3513  1.8074  2.6000  0.3517 -0.9375  4.1074         
   Pu-239 20.2784  0.9056  2.6000  0.3523 -1.8394  3.2056         
   Pu-238 20.2054  1.8150  2.6000  0.3313 -0.6081  3.8150         
   Pu-237 20.1324  0.9094  2.6000  0.3320 -1.5137  2.9094         
   Pu-236 20.0594  1.8226  2.6000  0.3326 -0.6004  3.8226         
  --------------------------------------------------------        
                                                                  
Table 6. Level density above outer saddle                         
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
   Pu-240 20.9063  1.8074  0.4200  0.3827 -0.1468  4.1074         
   Pu-239 19.7253  0.9056  0.3800  0.3818 -0.8914  3.0056         
   Pu-238 19.2870  1.8150  0.3400  0.3797  0.0977  3.8150         
   Pu-237 20.1324  0.9094  0.3000  0.3706 -0.7963  2.9094         
   Pu-236 20.0594  1.8226  0.2600  0.3719  0.1175  3.8226         
  --------------------------------------------------------        
                                                                  
Table 7. Gamma-ray strength function for Pu-240                   
  --------------------------------------------------------        
  K0 = 2.000   E0 = 4.500 (MeV)                                   
  * E1: ER = 10.90 (MeV) EG = 2.50 (MeV) SIG = 303.06 (mb)        
        ER = 13.80 (MeV) EG = 4.70 (MeV) SIG = 450.00 (mb)        
  * M1: ER =  6.60 (MeV) EG = 4.00 (MeV) SIG =   3.31 (mb)        
  * E2: ER = 10.14 (MeV) EG = 3.23 (MeV) SIG =   6.79 (mb)        
  --------------------------------------------------------        
                                                                  
                                                                  
References                                                        
 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009).     
 2) T.Kawano et al.: JAERI-Research 2003-026 (2003).              
 3) R.J.Tuttld: INDC(NDS)-107/G+special, p.29 (1979).             
 4) G.R.Keepin et al.: Phys. Rev., 107, 1044 (1957).              
 5) R.Gwin et al.: Nucl. Sci. Eng., 87, 381 (1984).               
 6) J.Frehaut: 1973 Rochester, vol.2, p.201 (1973).               
 7) R.Gwin et al.: ORNL-TM-6246 (1978).                           
 8) R.Gwin et al.: Nucl. Sci. Eng., 94, 365 (1986).               
 9) W.P.Poenitz: BNL-NCS-51363, Vol.I, p.249 (1981).              
10) S.Chiba, D.L.Smith: ANL/NDM-121 (1991).                       
11) A.S.Vorobyev et al., 2004 Santa Fe, Vol.1, p.613 (2004).      
12) H.Q.Zhao et al.: Chin. J. Nucl. Phys., 2, 29 (1980).          
13) D.S.Mather et al.: Nucl. Phys., 66, 149 (1965).               
14) J.C.Hopkins et al.: Nucl. Phys., 48, 433 (1963).              
15) I.Johnstond: AERE-NP/R-1912 (1956).                           
16) J.Frehaut: Private communication (1980).                      
17) D.S.Mather et al.: AWRE-O-42/70 (1970).                       
18) G.Audi: Private communication (April 2009).                   
19) J.Katakura et al.: JAERI 1343 (2001).                         
20) T.R.England et al.: LA-11151-MS (1988).                       
21) R.Sher, C.Beck: EPRI NP-1771 (1981).                          
22) H.Derrien et al.: 2007 Nice, AID#374 (2007).                  
23) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese.  
24) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).            
25) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005).     
26) J.A.Harvey et al.: 1988 Mito, p.115 (1988).                   
27) W.P.Poenitz, J.F.Whalen: ANL-NDM-80 (1983).                   
28) W.P.Poenitz et al.: Nucl. Sci. Eng. 78, 333 (1981).           
29) J.A.Becker et al.: 2001 Tsukuba, vol.1, p.620 (2001).         
30) R.W.Lougheed et al.: Radiochim. Acta, 90, 833 (2002).         
31) D.Gayther: 1975 Washington, Vol.2, p.560 (1975).              
32) C.Wagemans et al.: Ann. Nucl. Energy, 7, 495 (1980).          
33) T.Kawano et al.: JAERI-Research 2000-004 (2000).              
34) K.Merla et al.: 1991 Juelich, p.510 (1991).                   
35) L.W.Weston et al.,: Nucl. Sci. Eng., 88, 567 (1984).          
36) Chin: J. Nucl. Phys., 4, 131 (1982).                          
37) J.W.Li et al.: 1982 Antwerp, p.55 (1982).                     
38) M.Mahdavi et al.: 1982 Antwerp, p.58 (1982).                  
39) Ju. V. Rjabov et al.: At. Energy, 46, 154 (1979).             
40) M.Cance et al.: Nucl. Sci. Eng., 68, 197 (1978).              
41) M.C.Davis et al.: Ann. Nucl. Energy, 5, 569 (1978).           
42) I.Szabo et al.: 1976 ANL, p.208 (1976).                       
43) J.Blons: Nucl. Sci. Eng., 51, 130 (1973).                     
44) B.H.Patric et al.: EANDC(UK)-96 (1968).                       
45) R.Gwin et al.: Nucl. Sci. Eng., 59, 79 (1976).                
46) I.D.Alkhazov et al.: Yad. Konst., 1986, 19 (1986).            
47) O.A.Shcherbakov et al.: 2001 Dubna, p.288 (2001).             
48) P.Staples et al.: Nucl. Sci. Eng., 129, 149 (1998).           
49) J.W.Meadows: Ann. Nucl. Energy, 15, 421 (1988).               
50) M.Varnagy et al.: Nucl. Instrum. Methods, 196, 465 (1982).    
51) G.W.Carlson et al.: Nucl. Sci. Eng., 66, 205 (1978).          
52) B.I.Fursov et al.: At. Energy, 43, 261 (1977).                
53) S.Cierjacks et al.: 1976 ANL, p.94 (1976).                    
54) D.B.Gayther: 1975 Washington, Vol.2, p.564 (1975).            
55) W.P.Poenitz: Nucl. Sci. Eng., 47, 228 (1972).                 
56) E.Pfletschinger et al.: Nucl. Sci. Eng., 40, 375 (1970).      
57) W.P.Poenitz: Nucl. Sci. Eng., 40, 383 (1970).                 
58) P.W.Lisowski et al.: Private communication (2007).            
59) M.G.Schomberg et al.: 1970 Helsinki, Vol.1, p.315 (1970).     
60) V.B.Chelnokov et al.: Yaderno-Fizicheskie Issledovaniya       
    Reports No.13, p.6 (1972).                                    
61) V.N.Kononov et al.: Atomnaya Energiya, 38, 82 (1975).         
62) J.C.Hopkins, B.C.Diven: Nucl. Sci. Eng., 12, 169 (1962).      
63) D.G.Madland, J.R.Nix: Nucl. Sci. Eng., 81, 213 (1982).        
64) T.Ohsawa et al.: Nucl. Phys., A665, 3 (2000).                 
65) F.D.Becchetti Jr., G.W.Greenlees: Phys. Rev., 182, 1190       
   (1969).                                                        
66) P.Schillebeeckx et al.: Nucl. Phys. A545, 623 (1992).         
67) U.Brosa et al.: Phys. Rev., C59, 767 (1999).                  
68) M.C.Brady, T.R.England: Nucl. Sci. Eng., 103, 129 (1989).     
69) C.B.Besant et al.: J. Br. Nucl. Energy Soc., 16, 161 (1977).  
70) B.P.Maksyutenko: Yad. Fiz. (English Translation) 15, 848      
   (1963)                                                         
71) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973).            
72) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in         
    Japanese.                                                     
73) L.C.Leal et al.: private communication.                       
74) C.Kalbach: Phys. Rev. C33, 818 (1986).                        
75) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).     
76) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).     
77) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).                   
78) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953).            
79) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).                
80) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).