50-Sn-116 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5037 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT102,107) JENDL/AD-2017 adopted (MF10/MT28,103-105) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 32.8 keV The parameters are based on the work of Koehler et al./1/ A value of 6.32 fm was used for R. Unresolved resonance region : 32.8 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.6469e+00 Elastic 4.5218e+00 n,gamma 1.2515e-01 1.2175e+01 n,alpha 2.1168e-16 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,6 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Kunieda,S. et al./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-116 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.29356 2 + * 2 1.75686 0 + 3 2.02748 0 + 4 2.11232 2 + 5 2.22538 2 + 6 2.26616 3 - * 7 2.36598 5 - 8 2.39088 4 + 9 2.52920 4 + 10 2.54571 0 + 11 2.58556 1 + 12 2.65044 2 + 13 2.77333 6 - 14 2.79055 0 + 15 2.80128 4 + 16 2.84382 2 + 17 2.90885 7 - 18 2.96003 2 + 19 2.99627 3 + 20 3.01644 6 - 21 3.03270 6 + 22 3.04640 4 + 23 3.08863 2 + 24 3.09693 4 + 25 3.10518 5 - 26 3.15773 3 - 27 3.17968 3 + 28 3.18400 3 - 29 3.19432 0 + 30 3.21000 7 - 31 3.22745 2 + 32 3.22795 8 - 33 3.22806 2 + 34 3.23602 0 + 35 3.25767 4 - 36 3.27760 6 + 37 3.28899 1 - 38 3.30900 6 - 39 3.31499 3 + 40 3.33378 1 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453 Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849 Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538 Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831 In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948 In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585 In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976 In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037 Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632 Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627 Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086 Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999 Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-117 -------------------------------------------------------- * E1: ER = 15.64 (MeV) EG = 5.04 (MeV) SIG = 259.00 (mb) ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb) * M1: ER = 8.38 (MeV) EG = 4.00 (MeV) SIG = 1.09 (mb) * E2: ER = 12.88 (MeV) EG = 4.71 (MeV) SIG = 2.70 (mb) -------------------------------------------------------- References 1) Koehler, P.E., et al.: Phys. Rev., C64, 065802 (2001). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).