82-Pb-207 JAEA EVAL-Mar21 O.Iwamoto, N.Iwamoto DIST-DEC21 20210324 ----JENDL-5 MATERIAL 8234 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-03 Resonace parameters were evaluated by N. Iwamoto. Cross sections and spectra were evaluated and compiled by O. Iwamoto. 13-02 JENDL-4.0u1 Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were added. 21-02 Thermal capture cross section was adjusted by N. Iwamoto. 21-03 Elastic scattering cross section in the resolved resonance region was changed by N. Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,102,103,107) added 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved resonance parameters for Reich-Moore formula. Resonance ranges: 1.0e-5 eV to 680 keV Parameters were evaluated from the data of Mughabghab /1/ and Domingo-Pardo et al. /2/. The gamma widths of the negative resonances were adjusted to reproduce the data of Schillebeeckx et al. /3/. Effective scattering radius of 9.32 fm was chosen. The neutron widths of negative resonance and effective scattering radius (9.32 fm) were changed to become thermal elastic scattering cross section of 10.8 b. The resonance parameters of distant resonances were changed, since the cross sections between resonances were changed due to decrease of scattering radius. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.14268E+01 Elastic 1.07778E+01 n,gamma 6.48964E-01 3.57159E-01 n,alpha 4.07559E-08 2.08711E-07 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Based on experimental data/4/ and CCONE calculation. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section The (n,a) cross section below 680 keV was calculated from resonance parameters, by assuming a mean alpha width of 1.0e-5 eV and 5.0e-7 (above 550keV) for s-wave resonances and 5.0e-7 eV for p- and d-wave resonances. The cross section was averaged in suitable energy intervals. Above 680 keV, the cross section was connected smoothly to the CCONE calculation. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Neutron spectra calculated with CCONE code/5/. MT= 17 (n,3n) reaction Neutron spectra calculated with CCONE code/5/. MT= 22 (n,na) reaction Neutron spectra calculated with CCONE code/5/. MT= 28 (n,np) reaction Neutron spectra calculated with CCONE code/5/. MT= 51-91 (n,n') reaction Neutron angular distributions and spectra calculated with CCONE code/5/. MT= 102 Capture cross section Gamma-ray spectra calculated with CCONE code/5/. MF=33 Covariances of neutron cross sections Covariance data were basically evaluated with CCONE code/5/ and KALMAN code/6/. Evaluated data with the other methods are described bellow. MT=1 Total cross section 1.0e-5 eV to 680 keV(RRR): given by a sum of the covariance data of the elastic scattering and the neutron capture cross sections. 680 keV to 6 MeV: obtained based on the average cross section of the experimental data/4/. 6 MeV to 20 MeV: obtained by the CCONE-KALMAN. MT=2 Elastic scattering cross sections 1.0e-5 eV to 680 keV(RRR): obtained by the kernel approximation/7/. 680 keV to 20 MeV: obtained by the CCONE-KALMAN. MT=102 Capture cross section 1.0e-5 eV to 680 keV(RRR): obtained by the kernel approximation/7/. 680 keV to 20 MeV: obtained by the CCONE-KALMAN. MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Obtained by the CCONE-KALMAN. ***************************************************************** * Nuclear Model Calculation with CCONE code /5/ * ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model neutron OMP: Koning et al./8/ proton OMP: Koning and Delaroche /9/ alpha OMP: Avrigeanu et al./10/ with modification 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/14/ was included. * Neutron, proton, alpha and gamma decay channels were included. * Transmission coefficients of neutrons, proton and alpha were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 2. * Gamma-ray strength function of Kopecky et al/15/,/16/ was used. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pb-207 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 - 1 0.56970 5/2 - 2 0.89780 3/2 - 3 1.63337 13/2 + 4 2.33995 7/2 - 5 2.62350 5/2 + 6 2.66240 7/2 + 7 2.70200 9/2 + 8 2.72700 9/2 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pb-208 26.5095 1.6641 -9.9611 0.6945 1.6735 8.9801 Pb-207 25.6831 0.8341 -9.5535 0.7157 0.5055 8.8352 Pb-206 26.2968 1.6722 -8.3925 0.7059 0.4426 10.1593 Pb-205 26.1904 0.8381 -7.5629 0.6715 -0.4353 8.0994 Tl-207 24.0029 0.8341 -9.1989 0.6784 1.0665 6.0451 Tl-206 23.9062 0.0000 -9.0786 0.7703 -0.8614 9.5127 Tl-205 23.8095 0.8381 -7.9177 0.7491 -0.5502 9.6384 Hg-206 23.9062 1.6722 -8.0262 0.6306 1.6426 6.0277 Hg-205 23.8095 0.8381 -7.7955 0.6870 0.1648 7.1525 Hg-204 23.7127 1.6803 -7.2319 0.7544 -0.2408 10.8925 Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294 Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860 Hg-201 23.4219 0.8464 -5.2630 0.6922 -1.2829 8.2740 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pb-208 -------------------------------------------------------- * E1: ER = 13.49 (MeV) EG = 4.40 (MeV) SIG = 621.80 (mb) * M1: ER = 6.92 (MeV) EG = 4.00 (MeV) SIG = 1.41 (mb) * E2: ER = 10.63 (MeV) EG = 3.61 (MeV) SIG = 5.33 (mb) -------------------------------------------------------- References 1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) C.Domingo-Pardo et al.: Phys. Rev. C74, 055802 (2006). 3) P.Schillebeeckx et al. Eur. Phys. J. A49, 143 (2013). 4) D.J.Horen et al.: Phys. Rev. C18, 722 (1978). 5) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 6) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 7) P.Pblozinsky et al.: NL-91287-2010 (2010). 8) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007). 9) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 10) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02 (1994); Phys. Rev. C49,2136 (1994). 11) C.Kalbach: Phys. Rev. C33, 818 (1986). 12) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 13) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 14) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 15) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 16) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).