# Analyses of Criticality Benchmark Problems from ICSBEP handbook with a continuous-energy Monte Carlo Code MVP and JENDL-3.3 

Keisuke OKUMURA , Takamasa MORI and Yasunobu NAGAYA<br>Japan Atomic Energy Research Institute<br>Tokai-mura, Ibaraki-ken, 319-1195, Japan<br>okumura@mike.tokai.jaeri.go.jp, mori@mike.tokai.jaeri.go.jp, nagaya@mike.tokai.jaeri.go.jp

In order to clarify problems of JENDL-3.3 and to prepare a database for integral testing of next JENDL, an enormous number of criticality benchmark analyses are now under way by using a continuous-energy Monte Carlo code MVP and its library based on JENDL-3.3. The benchmark problems are taken from the handbook of Criticality Safety Benchmark Evaluation Project (ICSBEP), which covers various fuel materials (enriched ${ }^{233} \mathrm{U},{ }^{235} \mathrm{U}$, Pu, their mixtures), fuel forms (compound, metal, solution, and their mixed ones), neutron spectra (thermal, intermediate, fast).

Table 1 shows the benchmark cases selected from the ICSBEP handbook. The total number of benchmark cases is more than 900. For these cases, analyses with MVP and JENDL-3.3 will be finished by the end of FY2004. In this presentation, comparison of $k_{\text {eff }}$ between calculations and experiments will be shown for the results obtained until now.

Table 1 Selected benchmark cases from ICSBEP Ver. 2003

| Fuel | Form | Spectrum | Selected | ICSBEP2003 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HEU | SOL | INTER | 2 | 3 | 67 |
|  |  | THERM | 50 | 432 | 12 |
|  | COMP | FAST | 0 | 8 | 0 |
|  |  | INTER | 5 | 14 | 36 |
|  |  | THERM | 21 | 105 | 20 |
|  |  | MIXED | 0 | 45 | 0 |
|  | MET | FAST | 41 | 191 | 21 |
|  |  | INTER | 9 | 11 | 82 |
|  |  | THERM | 3 | 87 | 3 |
|  |  | MIXED | 8 | 29 | 28 |
|  | MISC | THERM | 0 | 7 | 0 |
| IEU | SOL | THERM | 0 | 4 | 0 |
|  | COMP | FAST | 1 | 1 | 100 |
|  |  | INTER | 2 | 2 | 100 |
|  |  | THERM | 1 | 38 | 3 |
|  | MET | FAST | 11 | 16 | 69 |
| LEU | SOL | THERM | 77 | 90 | 86 |
|  | COMP | THERM | 191 | 923 | 21 |
|  | MET | THERM | 13 | 13 | 100 |


| Fuel | Form | Spectrum | Selected | ICSBEP2003 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MIX | SOL | THERM | 12 | 48 | 25 |
|  | COMP | THERM | 63 | 184 | 34 |
|  | MET | FAST | 9 | 42 | 21 |
|  |  | INTER | 0 | 2 | 0 |
|  |  | MIXED | 0 | 1 | 0 |
|  | MISC | THERM | 64 | 53 | 121 |
| U233 | SOL | INTER | 29 | 29 | 100 |
|  |  | THERM | 44 | 140 | 31 |
|  |  | MIXED | 3 | 8 | 38 |
|  | MET | FAST | 10 | 10 | 100 |
| PU | SOL | THERM | 208 | 381 | 55 |
|  | COMP | FAST | 0 | 6 | 0 |
|  |  | INTER | 0 | 1 | 0 |
|  |  | THERM | 0 | 21 | 0 |
|  |  | MIXED | 0 | 7 | 0 |
|  | MET | FAST | 41 | 87 | 47 |
|  |  | INTER | 4 | 4 | 100 |
|  |  | THERM | 2 | 2 | 100 |
|  |  | MIXED | 1 | 1 | 100 |
| SPEC | MET | FAST | 0 | 18 | 0 |
| Total |  |  | 925 | 3064 | 30 |

