Analyses of Criticality Benchmark Problems from ICSBEP handbook with a continuous-energy Monte Carlo Code MVP and JENDL-3.3

Keisuke OKUMURA, Takamasa MORI and Yasunobu NAGAYA

Japan Atomic Energy Research Institute Tokai-mura, Ibaraki-ken, 319-1195, Japan okumura@mike.tokai.jaeri.go.jp, mori@mike.tokai.jaeri.go.jp, nagaya@mike.tokai.jaeri.go.jp

In order to clarify problems of JENDL-3.3 and to prepare a database for integral testing of next JENDL, an enormous number of criticality benchmark analyses are now under way by using a continuous-energy Monte Carlo code MVP and its library based on JENDL-3.3. The benchmark problems are taken from the handbook of Criticality Safety Benchmark Evaluation Project (ICSBEP), which covers various fuel materials (enriched ²³³U, ²³⁵U, Pu, their mixtures), fuel forms (compound, metal, solution, and their mixed ones), neutron spectra (thermal, intermediate, fast).

Table 1 shows the benchmark cases selected from the ICSBEP handbook. The total number of benchmark cases is more than 900. For these cases, analyses with MVP and JENDL-3.3 will be finished by the end of FY2004. In this presentation, comparison of k_{eff} between calculations and experiments will be shown for the results obtained until now.

Fuel	Form	Spectrum	Selected	ICSBEP2003	%
HEU	SOL	INTER	2	3	67
		THERM	50	432	12
	COMP	FAST	0	8	0
		INTER	5	14	36
		THERM	21	105	20
		MIXED	0	45	0
	MET	FAST	41	191	21
		INTER	9	11	82
		THERM	3	87	3
		MIXED	8	29	28
	MISC	THERM	0	7	0
IEU	SOL	THERM	0	4	0
	COMP	FAST	1	1	100
		INTER	2	2	100
		THERM	1	38	3
	MET	FAST	11	16	69
LEU	SOL	THERM	77	90	86
	COMP	THERM	191	923	21
	MET	THERM	13	13	100

 Table 1
 Selected benchmark cases from ICSBEP Ver.2003

Fuel	Form	Spectrum	Selected	ICSBEP2003	%
MIX	SOL	THERM	12	48	25
	COMP	THERM	63	184	34
	MET	FAST	9	42	21
		INTER	0	2	0
		MIXED	0	1	0
	MISC	THERM	64	53	121
U233	SOL	INTER	29	29	100
		THERM	44	140	31
		MIXED	3	8	38
	MET	FAST	10	10	100
PU	SOL	THERM	208	381	55
	COMP	FAST	0	6	0
		INTER	0	1	0
		THERM	0	21	0
		MIXED	0	7	0
	MET	FAST	41	87	47
		INTER	4	4	100
		THERM	2	2	100
		MIXED	1	1	100
SPEC	MET	FAST	0	18	0
Total			925	3064	30