NEUTRON EXPERIMENT FOR THE STUDY OF Re/Os COSMOCHRONOMETER M.Segawa[†], Y.Nagai, T.Shima, H.Makii, K.Mishima, H.Ueda, Y.Temma, T.Masaki Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan M.Igashira, T.Ohsaki Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8550, Japan T.Shizuma, T.Hayakawa Japan Atomic Energy Research Institute, 2-4 Shirakatashirane, Toukaimura, Ibaraki 319-1195, Japan The age determination of the universe has been an interesting subject. It has been considered that the Re-Os pair can be one of good cosmochronometers, since it has unique features as discussed below[1]. Namely, ¹⁸⁷Re is produced by only r-process and the half life of ¹⁸⁷Re is quite long 42.3±1.3 Gyr. Here, since ¹⁸⁶Os is the s-only isotope, ¹⁸⁷Os is produced not only by the decay of ¹⁸⁷Re but also by the slow neutron capture process of ¹⁸⁶Os. Hence, principally if we know the production rate by the s-process neutron capture of ¹⁸⁶Os and the loss rate of ¹⁸⁷Os, we could obtain the amount of the decay product of ¹⁸⁷Re using the well known relation, $\sigma(^{186}\text{Os})\text{N}(^{186}\text{Os}) = \sigma(^{187}\text{Os})\text{N}(^{187}\text{Os})[2]$. Here, $\sigma(^{A}\text{Os})$ and $N(^{A}\text{Os})$ stand for the neutron capture cross section and the observed abundance of Os isotope with mass number A, respectively. Consequently, we could deduce the age of the Galaxy. However, there is a problem which should be clarified. Namely, there exists the excited state at 10 keV in ¹⁸⁷Os. The state could be significantly populated at the stellar temperature of about 10⁸K, and therefore ¹⁸⁷Os is depleted by the neutron capture process through the excited state[1]. Hence it is very important to find a proper way to correct for the loss rate of ¹⁸⁷Os through the excited state in deducing the age of the Galaxy[3]. In order to correct for the effect various kinds of experimental works were made [4,5]. However, there is a discrepancy between different data sets. Hence in the present study we measured the neutron capture cross section of ¹⁸⁶Os, ¹⁸⁷Os and ¹⁸⁹Os for neutrons between 10 and 90 keV by detecting a promt γ -ray from these reactions using an anti-Compton NaI(Tl) spectrometer [6,7]. The neutrons were produced by the ⁷Li(p,n)⁷Be reaction using the pulsed proton beams provided from the Pelletron accelerator at Tokyo Institute of Technology. These cross sections were determined within uncertainties of 5-10 % in the measured energy reagion. We report preliminary results of these measurements. ## Reference - ¹D. D. Clayton, Astropys. J. 139, 637 (1964) - ²F. Käppeler, Prog. Nucl. Part. Phys, 43, 419 (1999) - ³W. A. Fowler, Revs. Modern Phys, Vol. 56, No. 2, Part 1, April 1984 - ⁴R. R. Winters, R. L. Macklin, Phys. Rev. C 25, 208 (1980); R. R. Winters, R. L. Macklin, and J. Halperin, Phys. Rev. C 21, 563 (1980) - ⁵J. C. Browne and B. L. Berman, Phys. Rev. C 23, 1434 (1981) - ⁶S. Mizuno, M. Igashira, K. Masuda, Nuclear Science and Technology 36, 493 (1999) - ⁷ M. Igashira, H. Kitazawa, N. Yamamuro, Nucl. Instrum. Methods A245,432 (1986) [†]E-mail: segawa@rcnp.osaka-u.ac.jp