Precise Measurement of Prompt γ -ray in the ¹⁴N(n, γ)¹⁵N Reaction

H. Takayama¹, M. Kasaishi¹, A. Tojo¹, H. Hayashi¹, I. Miyazaki¹, T. Shimizu¹, H. Sakane⁴, M. Shibata², K. Kawade¹, A. Taniguchi³, H. Harada⁴

¹Department of Energy Engineering and Science, Nagoya University ²Radioisotope Research Center, Nagoya University ³Research Reactor Institute, Kyoto University ⁴Japan Nuclear Cycle Development Institute

The prompt γ -rays from the ${}^{14}N(n,\gamma){}^{15}N$ reaction are expected to be an intensity standards in the energy up to 11 MeV. Capture γ -ray standards with intensity values accurate to 1.0 % or more are required. In the previous paper, prompt γ -ray intensities were determined using the balance method with 2-4 % accuracy [1,2]. In this method, precise level scheme was needed. Fifty eight γ -rays have been found in ${}^{14}N(n,\gamma){}^{15}N$ reaction.

So far a melamine $(C_3H_6N_6)$ was used for the target. The target, however, had a problem that the background increased under 2 MeV. Furthermore, the H prevented ¹⁴N from capturing neutrons efficiently due to its large cross section. These problems were improved by the liquid nitrogen target [3]. Accordingly, we aimed to determine the intensities with 1.0 % accuracy by using the liquid nitrogen target.

Experiments were carried out by using thermal-neutron beam at the B-4 guide tube (neutron flux $5 \times 10^7 \text{ n/cm}^2 \cdot \text{s}$) of the Kyoto University Reactor. The liquid nitrogen was used for the target. Capture γ -rays emitted from ¹⁵N were measured with 22 % and 38 % HPGe detectors that were located at 15-24 cm from the target (Fig.1). Single measurements were performed five times in order to improve the reliability

In the present work, we determined the γ -rays intensities in the ${}^{14}N(n,\gamma){}^{15}N$ reaction with 0.3-0.5 % accuracy. The results of the five measurements were consistent. Present accuracy was 5-8 times as improved as previous reports. Comparing the previous intensity with the present intensity, previous ones deviated 2 % or more (Fig. 2).

Reference: [1] T. J. Kennett et al., Nucl. Instr. and Meth. A249, 366 (1986).

[2] E. T. Journey et al., Phys. Rev. C56, 118 (1997).

[3] M. Hirano et al., 2001 Symposium on Nuclear Data, JAERI Tokai, Nov.

Fig.1 Measuring system for ${}^{14}N(n,\gamma){}^{15}N$ reaction. Detector to target distance is 15-24 cm.

Fig.2 Previous to present ratio of intensities. Previous ones deviated 2 % or more.