5-B-11

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 5.287 (b) 5.962 (b) 1.128 1.415 (b) 2.426 (b)
2 (n,elastic) 5.281 (b) 5.957 (b) 1.128 934.1 (mb) 2.397 (b)
4 (n,inelastic) ( E-thr = 2.320 MeV ) 298.3 (mb) 28.81 (mb)
16 (n,2n) ( E-thr = 12.51 MeV ) 1.414 (mb) 496.7 (nb)
22 (n,na) ( E-thr = 9.460 MeV ) 101.0 (mb) 27.54 (μb)
28 (n,np) ( E-thr = 12.26 MeV ) 1.104 (mb) 211.0 (nb)
29 (n,n2a) ( E-thr = 12.15 MeV ) 17.96 (mb) 3.696 (μb)
32 (n,nd) ( E-thr = 17.27 MeV ) 1.335 (nb)
33 (n,nt) ( E-thr = 12.25 MeV ) 747.4 (μb) 169.9 (nb)
102 (n,γ) 5.077 (mb) 5.080 (mb) 1.001 2.543 (mb) 0.000 (b) 5.473 (μb)
103 (n,p) ( E-thr = 11.71 MeV ) 4.021 (mb) 579.7 (nb)
104 (n,d) ( E-thr = 9.830 MeV ) 9.200 (mb) 4.074 (μb)
105 (n,t) ( E-thr = 10.44 MeV ) 14.96 (mb) 3.443 (μb)
107 (n,a) ( E-thr = 7.240 MeV ) 31.38 (mb) 63.13 (μb)

These cross sections are calculated from JENDL-3.2 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .