26-Fe-59

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 12.61 (b) 13.46 (b) 1.068 2.706 (b) 3.746 (b)
2 (n,elastic) 6.570 (b) 7.414 (b) 1.128 1.289 (b) 2.506 (b)
4 (n,inelastic) ( E-thr = 291.9 keV ) 308.1 (mb) 1.235 (b)
16 (n,2n) ( E-thr = 6.694 MeV ) 1.095 (b) 4.376 (mb)
17 (n,3n) ( E-thr = 16.91 MeV ) 70.32 (nb)
22 (n,na) ( E-thr = 8.117 MeV ) 25.89 (μb) 28.02 (nb)
28 (n,np) ( E-thr = 12.25 MeV ) 2.801 (μb) 55.78 (nb)
32 (n,nd) ( E-thr = 16.59 MeV ) 24.76e-12 (b)
102 (n,γ) 6.002 (b) 6.005 (b) 1.000 2.809 (b) 734.1 (μb) 867.9 (μb)
103 (n,p) ( E-thr = 4.477 MeV ) 9.310 (mb) 7.907 (μb)
104 (n,d) ( E-thr = 9.989 MeV ) 588.9 (μb) 135.8 (nb)
105 (n,t) ( E-thr = 10.23 MeV ) 22.00 (μb) 5.075 (nb)
106 (n,He-3) ( E-thr = 15.26 MeV ) 146.0e-18 (b)
107 (n,a) 0.000 (b) 0.000 (b) 270.9 (μb) 1.681 (mb) 11.84 (μb)

These cross sections are calculated from JENDL-4.0 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .