64-Gd-155

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 60.80 (kb) 51.30 (kb) 0.844 5.699 (b) 6.981 (b)
2 (n,elastic) 59.02 (b) 57.26 (b) 0.970 3.423 (b) 4.632 (b)
4 (n,inelastic) ( E-thr = 60.39 keV ) 472.0 (mb) 2.118 (b)
16 (n,2n) ( E-thr = 6.485 MeV ) 1.795 (b) 8.039 (mb)
17 (n,3n) ( E-thr = 15.20 MeV ) 4.261 (μb)
22 (n,na) 0.000 (b) 0.000 (b) 20.41 (nb) 72.00 (μb) 25.62 (nb)
28 (n,np) ( E-thr = 7.688 MeV ) 27.01 (μb) 21.68 (nb)
32 (n,nd) ( E-thr = 11.84 MeV ) 409.2e-21 (b) 475.3e-12 (b)
102 (n,γ) 60.74 (kb) 51.24 (kb) 0.844 1.534 (kb) 1.004 (mb) 222.5 (mb)
103 (n,p) 0.000 (b) 0.000 (b) 67.58 (μb) 5.458 (mb) 3.762 (μb)
104 (n,d) ( E-thr = 5.363 MeV ) 773.1 (μb) 178.6 (nb)
105 (n,t) ( E-thr = 5.619 MeV ) 26.75 (μb) 15.31 (nb)
107 (n,a) 81.75 (μb) 69.03 (μb) 0.845 24.52 (μb) 1.922 (mb) 2.864 (μb)

These cross sections are calculated from JENDL-3.2 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .