42-Mo-99

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 13.77 (b) 14.53 (b) 1.055 4.340 (b) 5.671 (b)
2 (n,elastic) 5.730 (b) 6.466 (b) 1.128 2.832 (b) 3.951 (b)
4 (n,inelastic) ( E-thr = 99.00 keV ) 69.42 (mb) 1.665 (b)
16 (n,2n) ( E-thr = 5.991 MeV ) 1.429 (b) 19.54 (mb)
17 (n,3n) ( E-thr = 14.73 MeV ) 4.293 (μb)
22 (n,na) ( E-thr = 2.756 MeV ) 187.6 (μb) 45.16 (nb)
28 (n,np) ( E-thr = 9.832 MeV ) 23.39 (μb) 23.04 (nb)
32 (n,nd) ( E-thr = 13.55 MeV ) 0.000 (b) 315.3e-12 (b)
33 (n,nt) ( E-thr = 15.47 MeV ) 1.128e-12 (b)
102 (n,γ) 8.003 (b) 8.003 (b) 1.000 41.57 (b) 1.001 (mb) 34.38 (mb)
103 (n,p) ( E-thr = 2.870 MeV ) 6.708 (mb) 2.657 (μb)
104 (n,d) ( E-thr = 7.499 MeV ) 267.8 (μb) 64.34 (nb)
105 (n,t) ( E-thr = 7.306 MeV ) 20.41 (μb) 10.83 (nb)
107 (n,a) 0.000 (b) 0.000 (b) 63.65 (μb) 1.950 (mb) 6.850 (μb)

These cross sections are calculated from JENDL-3.2 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .