28-Ni-58

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 30.99 (b) 34.39 (b) 1.110 2.662 (b) 3.836 (b)
2 (n,elastic) 26.48 (b) 29.88 (b) 1.128 1.296 (b) 3.389 (b)
4 (n,inelastic) ( E-thr = 1.480 MeV ) 296.6 (mb) 324.9 (mb)
16 (n,2n) ( E-thr = 12.42 MeV ) 21.50 (mb) 2.984 (μb)
22 (n,na) ( E-thr = 6.520 MeV ) 9.800 (mb) 1.940 (μb)
28 (n,np) ( E-thr = 8.320 MeV ) 560.0 (mb) 218.9 (μb)
102 (n,γ) 4.505 (b) 4.504 (b) 1.000 2.155 (b) 53.98 (μb) 8.475 (mb)
103 (n,p) 189.7e-15 (b) 428.1e-15 (b) 2.257 622.5 (mb) 364.0 (mb) 107.0 (mb)
104 (n,d) ( E-thr = 5.968 MeV ) 10.20 (mb) 3.185 (μb)
105 (n,t) ( E-thr = 11.25 MeV ) 11.00 (μb) 66.81 (nb)
106 (n,He-3) ( E-thr = 6.589 MeV ) 9.990 (μb) 2.908 (nb)
107 (n,a) 0.000 (b) 0.000 (b) 65.82 (mb) 91.90 (mb) 6.178 (mb)
111 (n,2p) ( E-thr = 6.671 MeV ) 11.80 (mb) 2.174 (μb)

These cross sections are calculated from JENDL-3.2 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .