62-Sm-154

MT Reaction 0.0253-eV Maxwellian
Average
g-factor Resonance
Integral
14-MeV Fiss. Spec.
Average
1 (n,total) 19.43 (b) 20.84 (b) 1.073 5.419 (b) 6.852 (b)
2 (n,elastic) 11.03 (b) 12.45 (b) 1.128 2.151 (b) 4.523 (b)
4 (n,inelastic) ( E-thr = 82.54 keV ) 1.379 (b) 2.281 (b)
16 (n,2n) ( E-thr = 8.025 MeV ) 1.885 (b) 3.680 (mb)
17 (n,3n) ( E-thr = 13.94 MeV ) 0.000 (b) 9.992 (μb)
22 (n,na) ( E-thr = 1.202 MeV ) 26.43 (μb) 15.91 (nb)
28 (n,np) ( E-thr = 9.047 MeV ) 366.9 (nb) 17.40 (nb)
32 (n,nd) ( E-thr = 14.32 MeV ) 4.132e-12 (b)
33 (n,nt) ( E-thr = 14.11 MeV ) 688.8e-15 (b)
102 (n,γ) 8.395 (b) 8.390 (b) 0.999 36.31 (b) 1.069 (mb) 44.14 (mb)
103 (n,p) ( E-thr = 3.243 MeV ) 1.680 (mb) 427.7 (nb)
104 (n,d) ( E-thr = 6.721 MeV ) 90.97 (μb) 77.72 (nb)
105 (n,t) ( E-thr = 8.091 MeV ) 6.578 (μb) 19.11 (nb)
107 (n,a) 0.000 (b) 0.000 (b) 581.5 (nb) 600.6 (μb) 155.0 (nb)

These cross sections are calculated from JENDL-3.2 at 300K.
The background color of each cell noted a cross section means the order of the cross-section value.
The unit of cross section, (b), means barns, and SI prefixes are used as following.
(kb) → 103(b),   (mb) → 10−3(b),  (μb) → 10−6(b),  (nb) → 10−9(b).

MT is a number that defines a reaction type. For the relation between MT and reaction type, please see here or refer to the manual of ENDF formats.

Maxwellian Average :
σmacs(T) =
2
 
 
π
EU
 
EL
σ(E,T) ⋅ E ⋅ exp (
E
  
kBT
) dE
 
EU
 
EL
E ⋅ exp (
E
  
kBT
) dE
,
where T denotes the temperature, and kB the Boltzmann constant. The upper and lower limits of integration, EL and EU are set to 10−5 eV and 10 eV, respectively.
Resonance Integral :
σri(T) =
EU
 
EL
σ(E,T) ⋅
1
 
E
dE ,
with  EL = 0.5 eV  and  EU = 10 MeV.
U-235 Thermal Fission-Neutron Spectrum Average (Fiss. Spec. Average) :
σfacs(T) =
EU
 
EL
σ(E,T) ⋅
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
 
EU
 
EL
 
4
 
πa3b
⋅ exp (
ab E
     
4 a
) ⋅ sinh
 
bE
dE
,
with  EL = 10−5 eV  and  EU = 20 MeV. The parameters a and b are 0.988 MeV and 2.249 MeV−1, respectively.
Westcott g-factor :
g(T) =
σmacs(T)
 
σ(0.0253 eV,T)
 .