47-Ag-110m
47-Ag-110MJAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4735
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
Resolved resonance region (MLBW formula) : below 0.125 keV
Most parameters were based on the experiments by Anufriev
et al./1/ Average radiation width of 148 MeV/1/ was
adopted. Total spin J was tentatively estimated with a
random number method. Neutron orbital angular momentum L
was estimated with a method of Bollinger and Thomas /2/.
A negative resonance at -2 eV was added so as to reproduce
the thermal capture cross sections given by Mughabghab et
al./3/
Unresolved resonance region : 125.0 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 8.8507e+01
Elastic 6.4982e+00
Inelas 1.2212e-02
n,gamma 8.1996e+01 7.4468e+01
n,p 7.0783e-10
n,alpha 1.4860e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /6/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /6/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 2,19 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: Huizenga,J.R. and Igo,G./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Ag-110
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1 +
1 0.00111 2 -
2 0.11759 6 + *
3 0.11872 3 +
4 0.19120 3 -
5 0.19162 2 +
6 0.19870 2 +
7 0.23686 2 -
8 0.23705 2 -
9 0.26722 2 +
10 0.26900 1 -
11 0.27147 3 +
12 0.30170 2 +
13 0.30452 1 +
14 0.33700 1 -
15 0.33892 2 -
16 0.36062 3 +
17 0.37800 1 -
18 0.38120 2 +
19 0.39559 7 + *
20 0.41198 2 -
21 0.42471 2 +
22 0.43237 2 -
23 0.45653 2 +
24 0.46689 2 -
25 0.46885 4 +
26 0.47123 1 +
27 0.48400 0 -
28 0.48578 3 +
29 0.49688 2 -
30 0.52566 2 +
31 0.52751 4 -
32 0.53600 0 -
33 0.53618 1 +
34 0.54938 2 +
35 0.58680 3 -
36 0.59400 1 -
37 0.59503 2 +
38 0.61304 1 -
39 0.61513 2 -
40 0.63344 2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Ag-111 13.4200 1.1390 3.5757 0.7153 -1.5062 6.6439
Ag-110 15.3000 0.0000 3.3762 0.5836 -1.7755 4.1405
Ag-109 15.6000 1.1494 2.9604 0.6222 -1.0590 5.9420
Ag-108 14.6000 0.0000 2.5216 0.6708 -2.2742 5.0724
Pd-110 13.9128 2.2883 3.6344 0.6741 -0.1028 7.3768
Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457
Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413
Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188
Rh-109 13.2140 1.1494 4.3457 0.6878 -1.3307 6.2934
Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132
Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036
Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000
Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130
--------------------------------------------------------
Table 3. Gamma-ray strength function for Ag-111
--------------------------------------------------------
* E1: ER = 15.90 (MeV) EG = 6.71 (MeV) SIG = 150.00 (mb)
ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb)
* M1: ER = 8.53 (MeV) EG = 4.00 (MeV) SIG = 1.18 (mb)
* E2: ER = 13.11 (MeV) EG = 4.78 (MeV) SIG = 2.48 (mb)
--------------------------------------------------------
References
1) ANUFRIEV,V.A. ET AL.: ATOM. ENERGIYA, 53, 29 (1982)
2) BOLLINGER,L.M. AND THOMAS,G.E.: PHYS. REV., 171,1293(1968).
3) MUGHABGHAB,S.F. ET AL.: "NEUTRON CROSS SECTIONS, VOL. I,
PART A", ACADEMIC PRESS (1981).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).