47-Ag-111
47-Ag-111 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4737
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
No resolved resonance parameters
Unresolved resonance region : 10.0 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 8.5171e+00
Elastic 5.4954e+00
n,gamma 3.0012e+00 1.0483e+02
n,alpha 9.8525e-20
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,5,17,22 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
(+) omp parameters were modified.
* resonance for pseudo levels was calculated on the basis of
DWBA.
ER= 2.500 (MeV) WIDTH= 0.400 (MeV) L= 3 BETA= 0.155
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Ag-111
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1/2 - *
1 0.05982 7/2 +
2 0.13028 9/2 +
3 0.28971 3/2 - *
4 0.37671 3/2 +
5 0.39128 5/2 - *
6 0.40486 1/2 +
7 0.54572 7/2 +
8 0.56867 5/2 +
9 0.56880 5/2 +
10 0.60687 5/2 +
11 0.64193 3/2 -
12 0.68305 9/2 +
13 0.70542 11/2 +
14 0.71029 7/2 +
15 0.80917 5/2 -
16 0.82446 11/2 +
17 0.84588 7/2 - *
18 0.87663 9/2 +
19 0.95896 11/2 +
20 0.98682 5/2 -
21 1.01306 9/2 +
22 1.02398 9/2 - *
23 1.06227 3/2 +
24 1.08200 1/2 -
25 1.08548 7/2 +
26 1.08664 5/2 +
27 1.11968 3/2 +
28 1.12535 11/2 +
29 1.14700 3/2 +
30 1.15341 7/2 -
31 1.15978 7/2 -
32 1.17020 5/2 +
33 1.18016 5/2 +
34 1.19888 1/2 +
35 1.20100 3/2 -
36 1.20230 11/2 +
37 1.21038 3/2 +
38 1.26279 3/2 +
39 1.27660 9/2 +
40 1.27800 3/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Ag-112 15.4000 0.0000 3.7588 0.5542 -1.5783 3.8000
Ag-111 13.4200 1.1390 3.5757 0.7153 -1.5062 6.6439
Ag-110 15.3000 0.0000 3.3762 0.5836 -1.7755 4.1405
Ag-109 15.6000 1.1494 2.9604 0.6222 -1.0590 5.9420
Pd-111 15.9000 1.1390 4.1515 0.6121 -1.4174 6.1649
Pd-110 13.9128 2.2883 3.6344 0.6741 -0.1028 7.3768
Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457
Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413
Rh-110 14.6000 0.0000 4.3454 0.5233 -1.1899 3.2077
Rh-109 13.2140 1.1494 4.3457 0.6878 -1.3307 6.2934
Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132
Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036
Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000
--------------------------------------------------------
Table 3. Gamma-ray strength function for Ag-112
--------------------------------------------------------
* E1: ER = 15.90 (MeV) EG = 6.71 (MeV) SIG = 150.00 (mb)
ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb)
* M1: ER = 8.51 (MeV) EG = 4.00 (MeV) SIG = 1.15 (mb)
* E2: ER = 13.07 (MeV) EG = 4.77 (MeV) SIG = 2.46 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).