95-Am-241

 95-AM-241 JAERI+     EVAL-Mar00 T.Nakagawa, O.Iwamoto, et al.    
JAERI-R 2001-059      DIST-MAR02 REV2-MAR01            20010314   
----JENDL-3.3         MATERIAL 9543                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
HISTORY                                                           
82-03 EVALUATION FOR JENDL-2 WAS MADE BY Y.KIKUCHI (JAERI) /1/.   
88-03 RE-EVALUATION FOR JENDL-3 WAS MADE BY T.NAKAGAWA (JAERI)    
      /2/                                                         
01-03 JENDL-3.3.                                                  
      New evaluation made by Maslov et al. /3/ was adopted and    
      modified by by T.Nakagawa (NDC/JAERI)                       
                                                                  
     *****   Modified parts from JENDL-3.2   ******************** 
      All data                                                    
     ***********************************************************  
                                                                  
                                                                  
MF=1  General Information                                         
  MT=451  Descriptive data and directory records                  
                                                                  
  MT=452  Number of neutrons per fission                          
     Sum of MT's= 455 and 456                                     
                                                                  
  MT=455  Delayed neutron data                                    
     Nu-d was based on the experimental data of Saleh et al./4/,  
     and the semi-empirical formula of Tuttle /5/ above 8 MeV .   
     Decay constants were adopted from Saleh et al./4/ and Brady  
     and England /6/.                                             
                                                                  
  MT=456  Number of prompt neutrons per fission                   
     Taken from measurements Kholkhlov et al./7/.                 
                                                                  
MF=2 Resonance Parameters                                         
  MT=151 Resolved and unresolved resonance parameters             
  1) Resolved resonance parameters for MLBW formula (below 150 eV)
      The resonance parameters adopted by Maslov et al. which     
      were mainly taken from Derrien and Lucas /8/, were          
      slightly modified to reproduce well the Yamamoto et al./9/  
      The parameters of low energy levels were adjusted to the    
      thermal cross sections and resonance integrals.             
                                                                  
  2) Unresolved resonance parameters (150 eV - 40 keV)            
      Average fission cross section to be repriduced was          
      determined from experimental data of Yamamoto et al./9/     
      and Dabbs et al./10/, and the capture cross section from    
      Vanpraet et al./11/ and Gayther et al./12/                  
                                                                  
      The average resonance parameters were determined with ASREP 
      /13/ to reproduce those average cross sections.             
                                                                  
                                                                  
         Thermal cross sections and resonance integrals           
                                                                  
    -------------------------------------------------------       
                    0.0253 eV    reson. integ.                    
    -------------------------------------------------------       
    total          654.44                                         
    elastic         11.83                                         
    fission          3.14             14.8                        
    capture        639.47           1460                          
    -------------------------------------------------------       
                                                                  
                                                                  
MF=3 Neutron Cross Sections                                       
  Except for the following reactions, the evaluated data of Maslov
  et al. /3/ were adopted.                                        
                                                                  
  MT= 1 Total cross section                                       
    Data of JENDL-3.2 were adopted. They were calculated with     
    spherical optical model parameters determined to reproduce    
    the total cross section measured by Phillips and Howe /14/    
                                                                  
           V = 43.4 - 0.107*EN                      (MeV)         
           Ws= 6.95 - 0.339*EN + 0.0531*EN**2       (MeV)         
           Wv= 0             , Vso = 7.0            (MeV)         
           r = rso = 1.282   , rs  = 1.29            (fm)         
           a = aso = 0.60    , b   = 0.5             (fm)         
                                                                  
  MT= 2 Elastic scattering cross section                          
    Calculated as (total - sum ofpartiacl cross sections)         
                                                                  
  MT=18 Fission cross section                                     
    Based on the experimental data of Hirakawa /15/,              
    Prindre et al. /16/, Aleksandrov et al. /17/, Cance et al.    
    /18/, Dabbs et al. /10/, Aleksandrov et al. /19/,             
    Vorotnikov et al./20/, Wisshak anf Kaeppeler /21/.            
                                                                  
  MT=102 Capture cross section                                    
    Based on the evaluated data of Maslov et al. In the MeV       
    region, the cross section of direct and semi-direct process   
    was calculated with DSD code /22/.                            
                                                                  
MF=4 Angular Distributions of Secondary Neutrons                  
  All data were taken from the evaluation by Maslov et al. /3/    
                                                                  
MF=5 Energy Distributions of Secondary Neutrons                   
  All data were taken from the evaluation by Maslov et al. /3/    
                                                                  
MF=8 Radiactive Decay Data                                        
  MT=102                                                          
    Decay data were taken from ENSDF.                             
                                                                  
MF=9 Multiplicities for Production of Radioactive Elements        
  MT=102                                                          
    En = 1e-5 - 0.9 eV:                                           
      Based on the experimental data of Shinohara et al. /23/     
      and Wisshak et al./24/                                      
    En > 0.9 eV:                                                  
      Calculation based on Hauser-Feshbach statistical model and  
      normalized to the experimental data /24/ at 29 keV within   
      the experimental error. For the calculation optical         
      potential is from Maslov et al./3/, level scheme from       
      Wisshak et al./24/                                          
                                                                  
References                                                        
 1) Kikuchi Y.: JAERI-M 82-096 (1982).                            
 2) Nakagawa T.: JAERI-M 88-008 (1989).                           
 3) Malov V.M. et al.: INDC(BLR)-5 (1996).                        
 4) Saleh H.H. et al.: Nucl. Sci. Eng., 125, 51 (1997).           
 5) Tuttle R.J.: INDC(NDS)-107/G+Special, p.29 (1979).            
 6) Brady M.C. and England T.R.: Nucl. Sci. Eng., 103, 129 (1989).
 7) Khokhlov Yu.A. et al.: 1994 Gatlinburg, Vol.1, p.272 (1994).  
 8) Derrien H. and Lucas B.: 1975 Washington, Vol.II, p.637       
    (1975).                                                       
 9) Yamamoto S. et al.: Nucl. Sci. Eng., 126, 201 (1997).         
10) Dabbs J.W.T. et al.: Nucl. Sci. Eng., 83, 22 (1983).          
11) Gayther D.B. and Thomas B.W.: 1977 Kiev, Vol. 3, p.3 (1977).  
12) Vanpraet G. et al.: 1985 Santa Fe, Vol.1, p.493 (1985).       
13) Kikuchi Y. et al.: JAERI-Data/Code 99-025 (1999).             
14) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng., 69, 375(1979).  
15) Hirakawa N.: JNC TJ9400 99-007 (1999).                        
16) Prindre A.L., et al.: Phys. Rev., C20, 1824 (1979)            
17) Aleksandrov B.M. et al.: Atomnaya Energiya, 46, 416 (1979).   
18) Cance M., et al.: CEA-N-2194 (1981).                          
19) Aleksandrov B.M. et al.: Yadernye Konstanty, 1/50, 3 (1983).  
20) Vorotnikov P.E. et al.: Sov. J. Nucl. Phys., 44, 1403 (1986). 
21) Wisshak K. and Kaeppeler F.: Nucl. Sci. Eng., 76, 148 (1980). 
22) Kawano T.: private communication (1999).                      
23) Shinohara N. et al.: J. Nucl. Sci. Technol., 34, 7 (1997).    
24) Wisshak K. et al.: Nucl. Sci. Eng., 81, 396 (1982).           
                                                                  
                                                                  
========== COMMENT TO Maslov's Evaluation ========================
                                                                  
 95-Am-241 MINSK BYEL  EVAL-MAY96                                 
                      DIST-MAY96                                  
                      V.M. MASLOV, E.Sh. SUKHOVITSKIJ,            
                      Yu.V. PORODZINSKIJ, A.B. KLEPATSKIJ,        
                      G.B.  MOROGOVSKIJ                           
 STATUS                                                           
 EVALUATION WAS MADE UNDER THE PROJECT AGREEMENT CIS-03-95        
 WITH INTERNATIONAL SCIENCE AND TECHNOLOGY CENTER (MOSCOW).       
 FINANCING PARTY OF THE CENTER FOR THE PROJECT IS JAPAN.          
 EVALUATION WAS REQUESTED BY Y.KIKUCHI (JAERI, TOKAI)             
                                                                  
 MF=1   GENERAL  INFORMATION                                      
                                                                  
   MT=451  COMMENTS AND DICTIONARY                                
   MT=452  TOTAL NUMBER OF NEUTRONS PER FISSION                   
           SUM OF MT=455 AND MT=456.                              
   MT=455  DELAYED NEUTRON DATA                                   
           NUMBER OF DELAYED NEUTRONS AND                         
           DECAY CONSTANTS FROM BRADY ET AL./1 /                  
   MT=456  NUMBER OF PROMPT NEUTRONS PER FISSION                  
           MADLAND-NIX MODEL CALCULATIONS /2/ FITTED TO           
           THE EXPERIMENTAL ENERGY DEPENDENCE 3.078+0.146En       
           OF KHOKHLOV ET AL. /3/ BELOW 5.5 MEV. ABOVE            
           EMISSIVE FISSION THRESHOLD A SUPERPOSITION OF          
           NEUTRON EMISSION IN (N,XNF) REACTIONS /4/ AND PROMPT   
           FISSION NEUTRONS IS EMPLOYED.                          
                                                                  
 MF=2   RESONANCE PARAMETERS                                      
   MT=151  RESONANCE  PARAMETERS  (MLBW)                          
           RESOLVED RESONANCE REGION :     1.0E-5 - 150 EV        
           PARAMETERS FOR BREIT -WIGNER FORMULA ARE BASED ON      
           THE DATA OF ADAMCHUK ET AL. /5/, DERRIEN AND LUCAS /6/,
           BOWMAN ET AL. /7/, GERASIMOV /8/, DABBS ET AL. /9/,    
           WESTON AND TODD /10/ AND VANPRAET ET AL. /11/.         
           UNRESOLVED RESONANCE REGION : 0.15 - 41.3483 KEV.      
           ENERGY INDEPENDENT PARAMETERS:                         
              R=9.157 FM  FROM OPTICAL MODEL CALCULATIONS         
              S1=2.204E-4    FROM OPTICAL MODEL CALCULATIONS      
              S2=1.022E-4    FROM OPTICAL MODEL CALCULATIONS      
           ENERGY   DEPENDENT PARAMETERS:                         
           S0 - DECREASES FROM .864-4 (0.15KEV)TO .807-4 (41.4keV)
           D - SPIN DEPENDENT, NORMALIZED TO  =0.505 EV     
           WITH ACCOUNT OF LEVEL MISSING /12/                     
           WF -SPIN DEPENDENT AS DEFINED BY THE TRANSITION STATE  
           SPECTRA AT INNER AND OUTER BARRIER HUMPS,NORMALIZED    
           TO  =0.38 mEV TO FIT UNRESOLVED RESONANCE REGION
           EXPERIMENTAL FISSION DATA /9/.                         
           WG - FROM CASCADE MODEL WITH ACCOUNT OF FISSION        
           COMPETITION,SPIN DEPENDENT. NORMALIZED TO =     
           0.0484 EV.                                             
           CALCULATED 2200 M/S CROSS SECTIONS AND RESONANCE       
                       INTEGRALS.                                 
                            2200 M/SEC       RES.INTEG.           
              TOTAL         599.469 b            -                
              ELASTIC        11.531 b            -                
              FISSION         3.136 b           14.508            
              CAPTURE       584.802 b         1351.200            
                                                                  
 MF=3   NEUTRON CROSS SECTIONS                                    
                                                                  
   MT=1,4,51-60,91,102.  TOTAL, ELASTIC AND INELASTIC             
           SCATTERING, CAPTURE CROSS SECTION                      
           TOTAL,DIRECT ELASTIC AND DIRECT INELASTIC FOR MT=51,   
           52,53 AND OPTICAL TRANSMISSION COEFFICIENTS FROM       
           COUPLED CHANNELS CALCULATIONS.                         
           THE DEFORMED OPTICAL POTENTIAL USED:                   
           VR=46.15-0.3*E(MEV)    RR=1.26 FM  AR=0.615 FM         
           WD= 3.56+0.4*E(MEV) E <  10 MEV    RD=1.24 FM          
           WD= 7.77            E => 10 MEV    AD=0.5 FM           
           VSO=6.2  RSO=1.12  ASO=0.47  B2=0.181  B4=0.076        
           FOUR LOWER LEVELS OF GROUND STATE ROTATIONAL BAND      
           ARE COUPLED.                                           
           CAPTURE,COMPOUND ELASTIC AND INELASTIC BY STATISTICAL  
           MODEL, SEE MT=18-21                                    
           ABOVE NEUTRON ENERGY 5 MEV CAPTURE IS ASUMED TO BE     
           0.001  BARN AS PREDICTED BY DIRECT AND SEMI-DIRECT     
           CAPTURE CALCULATIONS                                   
           ADOPTED LEVEL SCHEME OF AM-241 FROM NUCLEAR DATA       
           SHEETS /13/ (9 LEVELS) PLUS 1 LEVEL ADDED FOR BAND     
           K,P=5/2+ ACCORDING TO   EJ=A(J(J+1)-K(K+1))            
             No       ENERGY(MEV)     SPIN-PARITY   K             
            g.s.       0.0             5/2   -     5/2            
             1         0.041176        7/2   -     5/2            
             2         0.09365         9/2   -     5/2            
             3         0.158          11/2   -     5/2            
             4         0.20588         5/2   +     5/2            
             5         0.234          13/2   -     5/2   *        
             6         0.235           7/2   +     5/2            
             7         0.239           3/2   -     3/2            
             8         0.272           9/2   +     5/2            
             9         0.273           5/2   -     3/2            
            10         0.312          15/2   -     5/2            
            * - ADDED                                             
                                                                  
          OVERLAPPING LEVELS ARE ASSUMED ABOVE 0.312 MEV          
          LEVEL DENSITY PARAMETERS: SEE MT 18-21                  
   MT=16,17.  (N,2N) AND (N,3N) CROSS SECTION                     
          FROM STATISTICAL MODEL CALCULATIONS /14/ WITH THE       
          ACCOUNT OF PRE-EQUILIBRIUM NEUTRON EMISSION:SEE MT=18-21
   MT=18,19,20,21.  FISSION CROSS SECTION IS CALCULATED WITHIN    
          STATISTICAL MODEL /15/, THE MEASURED DATA OF:           
          DABBS ET AL./9/, HAGE ET AL./16/, WISSHAK ET AL./17/,   
          KUPRIYANOV ET AL./18/, KNITTER ET AL. /19/,             
          PRINDLE ET AL./20/, FOMUSHKIN ET AL./21/ ARE FITTED.    
          THE FIRST CHANCE FISSION MT=19 IS CALCULATED WITH       
          THE CONTRIBUTION OF EMISSIVE FISSION TO TOTAL FISSION   
          CROSS SECTION IS CALCULATED ACCORDING TO /14,15/.       
                                                                  
 MF=4   ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS               
                                                                  
        FOR MT=2,51,52,53 FROM COUPLED CHANNELS CALCULATIONS      
        WITH ADDED ISOTROPIC STATISTICAL CONTRIBUTION.            
                                                                  
   MT=16,17,18,52,54-60,91,16 ISOTROPIC                           
                                                                  
 MF=5   ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS                
                                                                  
        ENERGY DISTRIBUTIONS FOR MT=16,17 WERE                    
        CALCULATED BY STATISTICAL MODEL OF CASCADE NEUTRON        
        EMISSION TAKING INTO ACCOUNT THE HISTORY OF THE DECAY     
        WITH THE ALLOWANCE OF PRE-EQUILLIBRIUM EMISSION OF        
        THE FIRST NEUTRON /4/                                     
        ENERGY DISTRIBUTIONS FOR MT=18,19,20,21 WERE              
        CALCULATED BY MADLAND-NIX MODEL /2/ WITH ACCOUNT FOR      
        THE EFFECTS OF AND COMPETITION BETWEEN MULTIPLE-CHANCE    
        FISSION PROCESSES UP THROUGH THIRD-CHANCE FISSION         
        WITH THE ALLOWANCE OF PRE-EQUILLIBRIUM EMISSION OF        
        THE FIRST NEUTRON /4/                                     
                                                                  
REFERENCES                                                        
                                                                  
 1. Brady M.C., Wright R.Q., England T.R., Report ORNL/CSD/TM-    
    226(1991), IAEA-NDS-102, 1992.                                
 2. Madland D.G., Nix J.R., Nucl. Sci. Eng., 81, 213, (1982).     
 3. Khokhlov Yu.A., Ivanin I.A., In'kov V.I., et al., Proc of     
    Int. Conf. on Nucl. Data for Sci. and Tech., 9-13 May,        
    Gatlinburg, v.1, p.272, 1994.                                 
 4. Maslov V.M., Porodzinskij Yu.V.,Sukhovitskij E.Sh., Proc.     
    Int. Conf. on Neutron Physics, 14-18 Sept., Kiev, USSR,       
    v.1, p.413, 1988.                                             
 5. Adamchuk Ju.V. et al., Nucl. Sci. Eng., 61, 356 (1976).       
 6. Derrien H., Lucas B., 75 WASH., 2, 637 (1975).                
 7. Bowman C.D. et al., Phys. Rev. B, 137,326 (1965).             
 8. Gerasimov V.F., Yadernaja Fizica, 4, (5), 985 (1966).         
 9. Dabbs J.W.T. et al., Nucl. Sci. Eng., 83, 22, (1983).         
10. Weston L.W., Todd J.H., Nucl. Sci. Eng., 61, 356, (1976).     
11. Vanpraet G. et al., Proc. Int. Conf. on Nuclear Data for Basic
    and Applied Sci., Santa Fe, USA, (1985), vol. 1, 493.         
12. Porodzinskij Yu.V.,Sukhovitskij E.Sh., Nuclear Constants,     
    4, 27,1987.                                                   
13. ENDSF, 1995                                                   
14. Ignatjuk A.V., Maslov V.M., Pashchenko A.B. Sov. J. Nucl.     
    Phys. 47, 224 (1988).                                         
15. Maslov V.M. et al. INDC(BLR)-003, 1996                        
16. Hage W. et al. Nucl. Sci. Eng., 78, 248 (1981).               
17. Wisshak K. et al. Nucl. Sci. Eng., 76, 148 (1980).            
18. Kupriyanov S. et al. Sov. J. At. Energy, 45, 176, 1979        
19. Knitter et al. Atomkernenergie, Kerntechnik,3,205, 1979       
20. Prindle et al., Phys.Rev. C20, 1824, 1979                     
21. Fomushkin E.F.et al. Sov. J. Nucl. Phys.5, 689, 1967