79-Au-197
79-Au-197 JAEA EVAL-Feb10 N.Iwamoto
DIST-AUG13 20130813
----JENDL-4.0u1 MATERIAL 7925
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-02 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
13-08 The primary gamma data in MF6/MT102 were included in
continuum spectra. The maximum energies of continuum
spectrum in MF6/MT16,22,28,32,33,91,102 were revised.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region : below 2.3 keV
Resolved resonance parameters were taken from Mughabghab
/1/, supplimented by the data of Desjardins et al. /2/
and Alves et al. /3/. If the total spin J of resonance
level was not known, it was determined from the spin
distribution of the level density randomly. The negative
resonance was placed so as to reproduce the cross sections
at thermal energy recommended by Mughabghab /1/.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.0657e+02
Elastic 7.9220e+00
n,gamma 9.8649e+01 1.5711e+03
n,alpha 7.4569e-09
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,6 (see Table 1)
* optical model potential
neutron omp: Koning,A.J. and Delaroche,J.P./5/
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Au-197
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3/2 + *
1 0.07735 1/2 +
2 0.26879 3/2 +
3 0.27899 5/2 + *
4 0.40915 11/2 -
5 0.50250 5/2 +
6 0.54750 7/2 + *
7 0.58300 1/2 +
8 0.73670 7/2 +
9 0.85550 9/2 +
10 0.88200 5/2 +
11 0.88811 1/2 +
12 0.93600 5/2 +
13 0.94800 5/2 -
14 1.04510 5/2 +
15 1.12000 11/2 +
16 1.15050 5/2 +
17 1.21730 3/2 +
18 1.22000 11/2 -
19 1.23100 11/2 +
20 1.24200 1/2 +
21 1.26300 7/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Au-198 23.5000 0.0000 -3.4225 0.5829 -1.6170 4.9907
Au-197 22.0000 0.8550 -2.6591 0.5684 -0.5329 5.2839
Au-196 23.9000 0.0000 -2.0588 0.5154 -1.3667 4.0713
Au-195 21.7732 0.8593 -1.4759 0.5524 -0.6845 5.2681
Pt-197 23.5000 0.8550 -2.4961 0.5878 -1.1873 6.3005
Pt-196 23.9000 1.7143 -2.1512 0.5435 0.0374 6.3674
Pt-195 22.4000 0.8593 -1.4563 0.5983 -1.4448 6.5066
Pt-194 22.5803 1.7231 -1.1591 0.5393 0.0580 6.1996
Ir-196 22.6017 0.0000 -1.8165 0.3966 -0.2033 1.7963
Ir-195 21.7732 0.8593 -1.2540 0.5660 -0.9225 5.6240
Ir-194 23.4000 0.0000 -1.0076 0.5222 -1.6745 4.3969
Ir-193 23.3000 0.8638 -0.5016 0.5194 -0.9094 5.3195
Ir-192 23.8000 0.0000 -0.0310 0.4621 -1.2968 3.5533
Ir-191 21.3859 0.8683 0.2942 0.5392 -0.9709 5.4012
--------------------------------------------------------
Table 3. Gamma-ray strength function for Au-198
--------------------------------------------------------
* E1: ER = 13.73 (MeV) EG = 4.76 (MeV) SIG = 502.00 (mb)
ER = 5.50 (MeV) EG = 1.50 (MeV) SIG = 5.50 (mb)
ER = 1.70 (MeV) EG = 0.50 (MeV) SIG = 0.04 (mb)
* M1: ER = 7.03 (MeV) EG = 4.00 (MeV) SIG = 1.47 (mb)
* E2: ER = 10.81 (MeV) EG = 3.73 (MeV) SIG = 5.03 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) Desjardins,J.S. et al.: Phys. Rev., 120, 2214 (1960).
3) Alves,R.N. et al.: Nucl. Phys., A131, 450 (1969).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).