5-B - 10

  5-B - 10 JAERI      EVAL-MAR87 S.CHIBA                          
                      DIST-SEP89                                  
----JENDL-3.2         MATERIAL  525                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
HISTORY                                                           
87-03  NEWLY EVALUATED BY S.CHIBA (JAERI) FOR JENDL-3.            
88-11  DATA FOR MF=3(MT=1,2,3,4,51,103,107,113,800,801) WERE      
       MODIFIED.  DATA FOR MF=12(MT=102,801), MF=13(MT=4,103),    
       MF=14(MT=4,102,103,801) WERE ADDED.  COMMENT WAS ALSO      
       MODIFIED.                                                  
                                                                  
MF=1          GENERAL INFORMATION                                 
  MT=451    DESCRIPTIVE DATA AND DICTIONARY                       
                                                                  
MF=2          RESONANCE PARAMETERS                                
  MT=151    SCATTERING RADIUS ONLY.                               
             THE 2200M/S AND 14 MEV CROSS SECTIONS ARE IN         
             TABLE 1.                                             
                                                                  
MF=3          NEUTRON CROSS SECTIONS                              
  MT=1      TOTAL                                                 
        BELOW 1.2 MEV, SUM OF THE PARTIAL CROSS SECTIONS.         
        1.2 TO 17 MEV, BASED ON THE EXPERIMENTAL DATA /1/-/9/.    
        ABOVE 17MEV, OPTICAL MODEL CALCULATION WAS NORMALIZED AT  
         17 MEV. THE SPHERICAL OPTICAL POTENTIAL PARAMETERS/10/   
         ARE LISTED IN TABLE 2.                                   
  MT=2      ELASTIC SCATTERING                                    
        BELOW 10 KEV, BASED ON THE R-MATRIX CALCULATION. THE      
         R-MATRIX PARAMETERS ARE MAINLY BASED ON REF./11/.        
        10 KEV TO 1.2 MEV, BASED ON THE EXPERIMENTAL DATA /12/-   
         /14/.                                                    
        ABOVE 1.2 MEV, CALCULATED BY SUBTRACTING ALL THE OTHER    
         PARTIAL CROSS SECTIONS FROM THE TOTAL CROSS SECTION.     
  MT=3      NON-ELASTIC                                           
        SUM OF MT=4, 16, 102, 103, 104, 107 AND 113.              
  MT=4      TOTAL INELASTIC                                       
        SUM OF MT=51 TO 89.                                       
  MT=16     (N,2N)                                                
        BASED ON THE EXPERIMENTAL DATA /15/. CROSS SECTION WAS    
         EXTRAPOLATED AS 0.0120*SQRT(E-ETH), WHERE E IS INCIDENT  
         NEUTRON ENERGY AND ETH THRESHOLD ENERGY IN MEV. NOTE     
         THAT THIS REACTION PRODUCES 1 PROTON AND 2 ALPHA         
         PARTICLES, I.E. (N,2NP)2ALPHA.                           
  MT=51-59, 61, 62, 64-66. INELASTIC SCATTERING TO REAL LEVELS    
         CROSS SECTIONS WERE CALCULATED BY THE COLLECTIVE MODEL   
          DWBA AND NORMALIZED TO THE EXPERIMENTAL DATA/16/ AT 14  
          MEV. CALCULATED LEVELS AND ASSUMED ORBITAL ANGULAR      
          MOMENTUM TRANSFERS (L) ARE SUMMARIZED IN TABLE 3.       
         DATA FOR MT=51 WAS NORMALIZED TO THE EXPERIMENTAL        
          DATA/17/ BELOW 6MEV.  ABOVE 6MEV, THE DEFORMATION       
          PARAMETER DEDUCED FROM (P,P') REACTION/18/ WAS USED.    
  MT=60,63,67-89 (N,N'D)2ALPHA CONTINUUM.                         
        REPRESENTED BY PSEUDO-LEVELS, BINNED IN 0.5 MEV INTERVALS.
         THE (N,N'D)2ALPHA CROSS SECTION WAS BASED ON THE         
         MEASUREMENT OF FRYE+ /19/. THE CROSS SECTION FOR EACH    
         LEVEL WAS CALCULATED BY THE 3-BODY PHASE SPACE           
         DISTRIBUTION, ASSUMING ISOTROPIC CENTER-OF-MASS          
         ANGULAR DISTRIBUTIONS.                                   
  MT=102    CAPTURE                                               
        1/V SHAPE WAS NORMALIZED TO THE EXPERIMENTAL DATA /20/.   
  MT=103    (N,P)                                                 
        SUM OF MT = 700 TO 705.                                   
  MT=104    (N,D)                                                 
        SUM OF MT = 720 AND 721.                                  
  MT=107    (N,ALPHA)                                             
        SUM OF MT = 800 AND 801. THE THERMAL CROSS SECTION OF     
        3837 BARNS WAS ADOPTED/21/.                               
  MT=113    (N,T)2ALPHA                                           
        BASED ON THE EXPERIMENTAL DATA /19/,/22/-/29/             
  MT=251    MU-BAR                                                
        CALCULATED FROM THE DATA IN FILE4.                        
  MT=600 (N,P) TO THE GROUND STATE OF BE-10.                      
        BELOW 100 KEV, ASSUMED TO BE 1/V. THE THERMAL CROSS       
         SECTION WAS ASSUMED TO BE 3MB/30/.                       
        FROM 100 KEV TO 500 KEV, ASSUMED TO BE CONSTANT.          
        FROM 500 KEV TO 1 MEV, LINEARLY INTERPOLATED.             
        ABOVE 1 MEV, THE STATISTICAL MODEL CALCULATION WAS        
         NORMALIZED BY A FACTOR OF 0.704.  THE OPTICAL POTENTIAL, 
         LEVEL SCHEMES AND LEVEL DENSITY PARAMETERS USED IN THE   
         CALCULATION ARE SUMMARIZED IN TABLES 2, 3 AND 4.         
  MT=601-605 (N,P) TO THE LOW LYING EXCITED STATES OF BE-10.      
        THE STATISTICAL MODEL CALCULATION WAS NORMALIZED TO THE   
         EXPERIMENTAL DATA/26/ AT 14 MEV.                         
  MT=650  (N,D0)                                                  
        BELOW 7.6 MEV, THE INVERSE REACTION CROSS SECTIONS/31/-   
         /32/ WERE CONVERTED BY THE PRINCIPLE OF DETAILED         
         BALANCE.                                                 
        FROM 7.6 TO 14 MEV, INTERPOLATED LINEARLY.                
        ABOVE 14 MEV, DWBA CALCULATION WITH THE PROTON PICKUP     
         MECHANISM WAS NORMALIZED TO THE EXPERIMENTAL DATA,       
         /33/-/34/ AT 14 MEV. THE D + BE-9 AND BOUND PROTON       
         POTENTIALS OF VALKOVIC+/34/ WERE USED. DEPTH OF THE      
         PROTON POTENTIAL WAS SEARCHED BY THE SEPARATION ENERGY   
         METHOD.  THE POTENTIAL PARAMETERS ARE LISTED IN TABLE 2. 
  MT=651  (N,D2)                                                  
        DWBA CALCULATION WITH THE PROTON PICKUP MECHANISM WAS     
         NORMALIZED TO THE EXPERIMENTAL DATA/26/,/33/-/34/ AT 14  
         MEV. THIS IS REALLY THE (N,D) REACTION TO THE SECOND     
         LEVEL OF BE-9.                                           
  MT=800, (N,ALPHA0)                                              
        BELOW 10 KEV, R-MATRIX CALCULATION.                       
        FROM 10 KEV TO 800 KEV, BASED ON THE EXPERIMENTAL DATA    
         /35/-/36/.                                               
        FROM 800 KEV TO 7.5 MEV, THE EXPERIMENTAL DATA/37/ WERE   
         NORMALIZED BY A FACTOR OF 1.38 AND FITTED BY THE SPLINE  
         FUNCTION.                                                
        ABOVE 7 MEV, THE EXPERIMENTAL DATA/26/ WERE ADOPTED.      
  MT=801  (N,ALPHA1)                                              
        BELOW 10 KEV, THE R-MATRIX CALCULATION.                   
        FROM 10 KEV TO 100 KEV, BASED ON THE EXPERIMENTAL DATA/36/
         /38/.                                                    
        FROM 100 KEV TO 2 MEV, RECOMMENDATION BY LISKIEN AND      
         WATTECAMPS/39/ WAS ADOPTED.                              
        FROM 2 TO 7.5 MEV, THE EXPERIMENTAL DATA/37-40/ WERE      
         NORMALIZED BY A FACTOR OF 1.38 AND FITTED BY THE SPLINE  
         FUNCTION.                                                
        ABOVE 7 MEV, THE EXPERIMENTAL DATA/40/ WAS ADOPTED.       
                                                                  
MF=4           ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS        
  MT=2                                                            
        BELOW 100 KEV, THE R-MATRIX CALCULATION.                  
        FROM 100 KEV TO 6 MEV, ENDF/B-V WAS ADOPTED.              
        ABOVE 6 MEV, BASED ON THE OPTICAL MODEL CALCULATION.      
  MT=16                                                           
        CALCULATED BY THE METHOD OF NAKAGAWA/41/.                 
        ANGULAR DISTRIBUTIONS ARE GIVEN IN THE LABORATORY SYSTEM. 
  MT=51-59, 61, 62, 64-66.                                        
        DWBA CALCULATION.                                         
  MT=60, 63, 67-89                                                
        ASSUMED TO BE ISOTROPIC IN CM.                            
                                                                  
MF=5          ENERGY DISTRIBUTION OF SECONDARY NEUTRONS           
  MT=16                                                           
        THE EVAPORATION MODEL WAS ASSUMED. THE EVAPORATION        
         TEMPERATURE WAS ASSUMED TO BE 1 MEV AT 14 MEV. IT WAS    
         EXTRAPOLATED AS                                          
             T = 0.2673*SQRT(EN) MEV,                             
         WHERE EN MEANS THE INCIDENT NEUTRON ENERGY IN THE        
         LABORATORY SYSTEM IN MEV.                                
                                                                  
MF=12         PHOTON MULTIPLICITIES                               
  MT=102                                                          
        MULTIPLICITIES WERE GIVEN ACCORDING TO A COMPILATION OF   
         AJZENBERG ET AL./43/.  HOWEVER, THEY WERE NORMALIZED     
         FOR THE TOTAL SECONDARY GAMMA-RAY ENERGY TO MATCH THE    
         AVAILABLE ENERGY IN THE FINAL STATE.                     
  MT=801                                                          
        MULTIPLICITY FOR THE 0.478-MEV GAMMA-RAY WAS GIVEN AS     
         1.0.                                                     
                                                                  
MF=13         PHOTON PRODUCTION CROSS SECTIONS                    
  MT=4                                                            
        EXPERIMENTAL DATA/41,44/ WERE ADOPTED FOR 0.4138-,        
         0.7183- AND 1.0219-MEV GAMMA-RAYS.  FOR 1.44- AND        
         2.15-MEV GAMMA-RAYS, EXCITATION FUNCTION OF THE          
         0.4138-MEV GAMMA-RAY PRODUCTION WAS NORMALIZED TO THE    
         DATA/41/ AT 14.8MEV.  FOR 2.87-, 3.01-, 4.44- AND        
         6.03-MEV GAMMA-RAYS, SHAPES OF THE CORRESPONDING (N,N')  
         EXCITATION FUNCTIONS IN MF=3 WERE NORMALIZED TO THE      
         DATA/41/ AT 14.8MEV.                                     
  MT=103                                                          
         FOR 3.368- AND 2.592-MEV GAMMA-RAYS, SHAPES OF THE       
          CORRESPONDING (N,P) EXCITATION FUNCTIONS IN MF=3        
          WERE NORMALIZED TO THE EXPERIMENTAL DATA/41/ AT         
          14.8MEV.                                                
                                                                  
MF=14         ANGULAR DISTRIBUTION OF SECONDARY PHOTONS           
  MT=4,102,103,113, 801                                           
        ASSUMED TO BE ISOTROPIC.                                  
                                                                  
REFERENCES                                                        
 1) AUCHAMPAUGH,G.F. ET AL.: NUCL. SCI. ENG. 69,30(1979).         
 2) COOK,C.E. ET AL.: PHYS. REV.  94, 651(1954).                  
 3) TSUKADA,K.: EXFOR 20324,003(1963).                            
 4) COON,J.H. ET AL.: PHYS.REV.  88, 562(1952).                   
 5) FOSSAN,D.B. ET AL.: PHYS.REV. 123, 209(1961).                 
 6) COOKSON,J.A. ET AL.: NUCL. PHYS. A146, 417(1970).             
 7) NERESON,N.G. ET AL.: LA-1655(1954).                           
 8) BECKER,R.L. ET AL.: PHYS.REV. 102, 1384(1956).                
 9) BOCKELMAN,C.K. ET AL.: PHYS. REV. 84, 69(1951).               
10) DAVE,J.H. ET AL.: PHYS.REV. C28,2112(1983).                   
11) HAUSLADEN,S.L. ET AL.: NUCL.PHYS. A217,563(1973).             
12) ASAMI,A. ET AL.: J.NUCL.ENERG. 24, 85(1970).                  
13) LANE,R.O. ET AL.: PHYS. REV. C4, 380(1971).                   
14) WILLARD,H.B. ET AL.: PHYS. REV. 98,669(1958).                 
15) MATHER,D.S.: AWRE-O-47/69(1969).                              
16) VAUCHER,B. ET AL.: HELV. PHYS. ACTA 43, 237(1970).            
17) PORTER D.: AWRE-O-45/70(1970)                                 
18) SWINIARSKI, R.D. ET AL.: HELV. PHYS. ACTA 49, 227(1976).      
19) FRYE,G.M. ET AL.: PHYS.REV. 103, 328(1956).                   
20) BATHOLOMEW,G.A. ET AL.: CAN.J.PHYS. 35, 1347(1957).           
21) MUGHABGHAB,S.F. ET AL.: 'NEUTRON CROSS SECTIONS', VOL.1 PART  
    A (ACADEMIC PRESS 1981, NEW YORK)                             
22) WYMAN,M.E. ET AL.: PHYS.REV. 112, 1264(1958).                 
23) KLEIN,P.D. ET AL.: EXFOR 12654,002(1966).                     
24) ANTOLKOVIC,B. ET AL.: NUCL.PHYS. A139, 10(1969).              
25) VALKOVIC,V. ET AL: NUCL.PHYS. A98, 305(1967).                 
26) SELLEM,C. ET AL.: NUCL.INSTRUM.METH. 128, 495(1975).          
27) CSERPAK,F. ET AL.: EXFOR 30474,003(1978).                     
28) SUHAIMI,A. ET AL.: RADIOCHIMICA ACTA 40, 113(1986).           
29) QAIM,S.M. ET AL.: PROC. INT. CONF. NUCL. DATA FOR SCI. AND    
    TECHNOL., MITO, MAY 30 - JUNE 3, 1988.                        
30) EGGLER,ET AL. : IN CINDA-A (1935-1976) VOL.1 (1979)           
31) BARDES,R. ET AL.: PHYS.REV. 120, 1369(1960).                  
32) SIEMSSEN,R.H. ET AL.: NUCL.PHYS. 69, 209(1965).               
33) RIBE,F.L. ET AL.: PHYS.REV. 94, 934(1954).                    
34) VALKOVIC,V. ET AL.: PHYS.REV. 139, B331(1965).                
35) OLSON,M.D. ET AL.: PHYS.REV. C30, 1375(1984).                 
36) SEALOCK,R.M. ET AL.: PHYS.REV. C13, 2149(1976).               
37) DAVIS,E.A. ET AL.: NUCL.PHYS. 27, 448(1961).                  
38) SCHRACK,R.A. ET AL.: NUCL.SCI.EENG. 68, 189(1978).            
39) LISKIEN,H. AND WATTECAMPS, E.: NUCL.SCI.ENG. 68, 132(1978).   
40) VIESTI,G. ET AL.: ANNALS NUCL. ENERG. 6, 13(1979).            
41) NELLIS R.O.: PHYS.REV. C1, 847(1970).                         
42) NAKAGAWA,T.: JAERI-M 84-103(1984)                             
43) AJZENBERG S.: NUCL.PHYS. A248, 1(1975).                       
44) DICKENS ET AL. : PROC. INT. CONF. NUCL. DATA FOR SCI.         
    & TECHNOL., MAY 30- JUNE 3, 1988, MITO, JAPAN.                
45) WATSON,B.A. ET AL: PHYS. REV. 182, 977(1969)                  
                                                                  
   TABLE 1   THE 2200-M/S AND 14 MEV CROSS SECTIONS               
   ----------------------------------------------------           
                       2200-M/S (B)     14 MEV (B)                
   ----------------------------------------------------           
      ELASTIC           2.144            0.943                    
      (N,N')            -----            0.269                    
      (N,P)             0.003            0.038                    
      (N,D)             -----            0.047                    
      (N,T)             0.012            0.095                    
      (N,ALPHA)         3837.0           0.049                    
      (N,2N)            -----            0.027                    
      CAPTURE           0.50             0.000                    
      TOTAL             3839.7           1.467                    
   ----------------------------------------------------           
                                                                  
   TABLE 2   OPTICAL POTENTIAL PARAMETERS                         
   -------------------------------------------------------------  
   B-10 + N /10/                                                  
         V= 47.91 - 0.346EN, WS= 0.657 + 0.810EN, VSO=5.5  (MEV)  
         R= 1.387          , RS= 1.336          , RSO=1.15 (FM)   
         A= 0.464          , AS= 0.278          , ASO=0.5  (FM)   
                                                                  
   BE-10 + P /45/                                                 
         V  = 60.0 + 27.0(N-Z)/A -0.3ECM                   (MEV)  
         WS = 0.64ECM + 10.0(N-Z)/A      ,(ECM < 13.8 MEV) (MEV)  
            = 9.60-0.06ECM + 10.0(N-Z)/A ,(ECM > 13.8 MEV) (MEV)  
         VSO= 5.5                                          (MEV)  
         R = RS = RSO = 1.15     (FM)                             
         A = ASO = 0.57, AS= 0.5 (FM)                             
                                                                  
   BE-9 + D /34/                                                  
         V= 80.0 , WV= 30.0 , VSO=6.0          (MEV)              
         R= 1.0  , RV= 1.0  , RSO=1.0 ,RC= 1.3 (FM)               
         A= 1.0  , AV= 0.8  , ASO=1.0          (FM)               
   -------------------------------------------------------------  
                                                                  
   TABLE 3   LEVEL SCHEMES USED IN THE DWBA OR STATISTICAL        
             MODEL CALCULATION                                    
   ---------------------------------------------------            
              B-10                      BE-10                     
   ---------------------------------------------------            
     MT    ENERGY    JP   L       MT     ENERGY    JP             
          ( MEV )                       ( MEV )                   
      2    0.0       3+           700    0.0       0+             
     51    0.7183    1+   2       701    3.368     2+             
     52    1.7402    0+   4       702    5.958     2+             
     53    2.154     1+   2       703    5.960     1-             
     54    3.587     2+   2       704    6.179     0+             
     55    4.774     3+   2       705    6.263     2-             
     56    5.110     2-   3                                       
     57    5.163     2+   2                                       
     58    5.18      1+   2                                       
     59    5.920     2+   2                                       
     61    6.025     4+   2                                       
     62    6.127     3-   3                                       
     64    6.561     3+   2                                       
     65    6.881     1-   3                                       
     66    7.00      1+   2                                       
           7.430     1-                                           
           7.470     1+                                           
           7.477     2-                                           
           7.560     0+                                           
           7.670     1+                                           
           7.840     1-                                           
           8.070     2-                                           
           8.650     1+                                           
           8.890     3-                                           
           8.894     2+                                           
   ---------------------------------------------------            
                                                                  
   TABLE 4   LEVEL DENSITY PARAMETERS USED IN THE STATISTICAL     
             MODEL CALCULATION                                    
----------------------------------------------------------------  
          A(1/MEV)    T(MEV)    C(1/MEV)  PAIR.(MEV)   EX(MEV)    
----------------------------------------------------------------  
  B-10     1.196       5.581     0.066       0.0        16.17     
  BE-10    1.088       5.866     0.021       5.13       19.63     
-----------------------------------------------------------------