5-B - 10
5-B - 10 JAERI EVAL-MAR87 S.CHIBA
DIST-MAY10 20090424
----JENDL-4.0 MATERIAL 525
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
HISTORY
87-03 Newly evaluated by S.Chiba (jaeri) for JENDL-3.
88-11 Data for mf=3(mt=1,2,3,4,51,103,107,113,800,801) were
modified. data for mf=12(mt=102,801), mf=13(mt=4,103),
mf=14(mt=4,102,103,801) were added. Comment was also
modified.
02-01 Compiled by K.Shibata for JENDL-3.3.
09-02 (n,t) reaction was modified by S. Chiba.
09-03 Compiled by S. Chiba for JENDL-4.
******** modifications for JENDL-3.3 *********************
(1,451) Updated.
(3,251) Deleted.
(4,2) Transformation matrix deleted.
(12,801) Eg and Es were corrected.
(33,1-801) Taken from JENDL-3.2 covariance file.
************************************************************
mf=1 General information
mt=451 Descriptive data and dictionary
mf=2 Resonance parameters
mt=151 Scattering radius only.
The 2200m/s and 14 MeV cross sections are in
Table 1.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 3.8408E+03
Elastic 2.2543E+00
n,gamma 5.0005E-01 2.2510E-01
n,p 3.0003E-03
n,alpha 3.8373E+03
n,t2alpha 8.0298E-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
mf=3 Neutron cross sections
mt=1 Total
Below 1.2 MeV, sum of the partial cross sections.
1.2 to 17 MeV, based on the experimental data /1/-/9/.
Above 17MeV, optical model calculation was normalized at
17 MeV. The spherical optical potential parameters/10/
are listed in Table 2.
mt=2 Elastic scattering
Below 10 keV, based on the R-matrix calculation. The
R-matrix parameters are mainly based on ref./11/.
10 keV to 1.2 MeV, based on the experimental data /12/-
/14/.
Above 1.2 MeV, calculated by subtracting all the other
partial cross sections from the total cross section.
mt=3 Non-elastic
Sum of mt=4, 16, 102, 103, 104, 107 and 113.
mt=4 Total inelastic
Sum of mt=51 to 89.
mt=16 (n,2n)
Based on the experimental data /15/. Cross section was
extrapolated as 0.0120*sqrt(E-Eth), where E is incident
neutron energy and Eth threshold energy in MeV. Note
that this reaction produces 1 proton and 2 alpha
particles, i.e. (n,2np)2alpha.
mt=51-59, 61, 62, 64-66. Inelastic scattering to real levels
Cross sections were calculated by the collective model
DWBA and normalized to the experimental data/16/ at 14
MeV. Calculated levels and assumed orbital angular
momentum transfers (l) are summarized in table 3.
data for mt=51 was normalized to the experimental
data/17/ below 6MeV. Above 6MeV, the deformation
parameter deduced from (p,p') reaction/18/ was used.
mt=60,63,67-89 (n,n'd)2alpha continuum.
Represented by pseudo-levels, binned in 0.5 MeV intervals.
The (n,n'd)2alpha cross section was based on the
measurement of Frye+ /19/. The cross section for each
level was calculated by the 3-body phase space
distribution, assuming isotropic center-of-mass
angular distributions.
mt=102 Capture
1/v shape was normalized to the experimental data /20/.
mt=103 (n,p)
Sum of mt = 700 to 705.
mt=104 (n,d)
Sum of mt = 720 and 721.
mt=107 (n,alpha)
Sum of mt = 800 and 801. The thermal cross section of
3837 barns was adopted/21/.
mt=113 (n,t)2alpha
Based on the experimental data /19/,/22/-/29/.
Feb. 2009
Modified by taking account of the resonant structure at
the threshold region. The trion widths were calculated
by the analytical continuation method (N. Itagaki), which
yielded Gamma_t = 22 keV for 370 keV and 30 keV for
1890 keV resonance (L=2). The WKB penetration factor
was applied to hinder the cross section for the first
resonance. The thermal cross section was also slightly
modified to take account of the recent experimental data
(Kornilov et al., YK,(1),11,9004, EXFOR41053002 and 5).
mt=600 (n,p) to the ground state of Be-10.
Below 100 keV, assumed to be 1/v. the thermal cross
section was assumed to be 3mb/30/.
From 100 keV to 500 keV, assumed to be constant.
From 500 keV to 1 MeV, linearly interpolated.
Above 1 MeV, the statistical model calculation was
normalized by a factor of 0.704. The optical potential,
level schemes and level density parameters used in the
calculation are summarized in Tables 2, 3 and 4.
mt=601-605 (n,p) to the low lying excited states of Be-10.
The statistical model calculation was normalized to the
experimental data/26/ at 14 MeV.
mt=650 (n,d0)
Below 7.6 MeV, the inverse reaction cross sections/31/-
/32/ were converted by the principle of detailed
balance.
From 7.6 to 14 MeV, interpolated linearly.
Above 14 MeV, DWBA calculation with the proton pickup
mechanism was normalized to the experimental data,
/33/-/34/ at 14 MeV. The d + Be-9 and bound proton
potentials of Valkovic+/34/ were used. Depth of the
proton potential was searched by the separation energy
method. the potential parameters are listed in Table 2.
mt=651 (n,d2)
DWBA calculation with the proton pickup mechanism was
normalized to the experimental data/26/,/33/-/34/ at 14
MeV. This is really the (n,d) reaction to the second
level of Be-9.
mt=800, (n,alpha0)
Below 10 keV, R-matrix calculation.
From 10 keV to 800 keV, based on the experimental data
/35/-/36/.
From 800 keV to 7.5 MeV, the experimental data/37/ were
normalized by a factor of 1.38 and fitted by the spline
function.
Above 7 MeV, the experimental data/26/ were adopted.
mt=801 (n,alpha1)
Below 10 keV, the R-matrix calculation.
From 10 keV to 100 keV, based on the experimental data/36/
/38/.
From 100 keV to 2 MeV, recommendation by Liskien and
Wattecamps/39/ was adopted.
From 2 to 7.5 MeV, the experimental data/37-40/ were
normalized by a factor of 1.38 and fitted by the spline
function.
Above 7 MeV, the experimental data/40/ was adopted.
mf=4 angular distributions of secondary neutrons
mt=2
Below 100 keV, the R-matrix calculation.
From 100 keV to 6 MeV, ENDF/B-V was adopted.
Above 6 MeV, based on the optical model calculation.
mt=16
Calculated by the method of Nakagawa/41/.
Angular distributions are given in the laboratory system.
mt=51-59, 61, 62, 64-66.
DWBA calculation.
mt=60, 63, 67-89
Assumed to be isotropic in cm.
mf=5 Energy distribution of secondary neutrons
mt=16
The evaporation model was assumed. the evaporation
temperature was assumed to be 1 MeV at 14 MeV. it was
extrapolated as
t = 0.2673*sqrt(En) MeV,
where En means the incident neutron energy in the
laboratory system in MeV.
mf=12 Photon multiplicities
mt=102
Multiplicities were given according to a compilation of
Ajzenberg et al./43/. However, they were normalized
for the total secondary gamma-ray energy to match the
available energy in the final state.
mt=801
Multiplicity for the 0.479-MeV gamma-ray was given as
1.0.
mf=13 Photon production cross sections
mt=4
Experimental data/41,44/ were adopted for 0.4138-,
0.7183- and 1.0219-MeV gamma-rays. For 1.44- and
2.15-MeV gamma-rays, excitation function of the
0.4138-MeV gamma-ray production was normalized to the
data/41/ at 14.8MeV. For 2.87-, 3.01-, 4.44- and
6.03-MeV gamma-rays, shapes of the corresponding (n,n')
excitation functions in mf=3 were normalized to the
data/41/ at 14.8MeV.
mt=103
For 3.368- and 2.592-MeV gamma-rays, shapes of the
corresponding (n,p) excitation functions in mf=3
were normalized to the experimental data/41/ at
14.8MeV.
mf=14 Angular distribution of secondary photons
mt=4,102,103,113, 801
Assumed to be isotropic.
mf=33 Covariances of cross sections (ref. 46)
mt=1
Below 1.2 MeV, constructed from mt=2, 102, 800 and 801.
Above 1.2 MeV, based on experimaental data. a chi-value
was 2.186.
mt=2
Below 1.2 MeV, based on experimental data.
Above 1.2 MeV, constructed from mt=1, 102, 800 and 801.
mt=102
Based on experimental data.
mt=107
Constructed from mt=800 and 801.
mt=800
Based on experimental data. A chi-value was 1.203.
mt=801
Based on experimental data. A chi-value was 1.913.
References
1) Auchampaugh,G.F. et al.: Nucl. Sci. Eng. 69,30(1979).
2) Cook,C.E. et al.: Phys. Rev. 94, 651(1954).
3) Tsukada,K.: EXFOR 20324,003(1963).
4) Coon,J.H. et al.: Phys.Rev. 88, 562(1952).
5) Fossan,D.B. et al.: Phys.Rev. 123, 209(1961).
6) Cookson,J.A. et al.: Nucl. Phys. A146, 417(1970).
7) Nereson,N.G. et al.: LA-1655(1954).
8) Becker,R.L. et al.: Phys.Rev. 102, 1384(1956).
9) Bockelman,C.K. et al.: Phys. Rev. 84, 69(1951).
10) Dave,J.H. et al.: Phys.Rev. C28,2112(1983).
11) Hausladen,S.L. et al.: Nucl.Phys. A217,563(1973).
12) Asami,A. et al.: J.Nucl.Energ. 24, 85(1970).
13) Lane,R.O. et al.: Phys. Rev. C4, 380(1971).
14) Willard,H.B. et al.: Phys. Rev. 98,669(1958).
15) Mather,D.S.: AWRE-O-47/69(1969).
16) Vaucher,B. et al.: Helv. Phys. Acta 43, 237(1970).
17) Porter D.: AWRE-O-45/70(1970)
18) Swiniarski, R.D. et al.: Helv. Phys. Acta 49, 227(1976).
19) Frye,G.M. et al.: Phys.Rev. 103, 328(1956).
20) Batholomew,G.A. et al.: Can.J.Phys. 35, 1347(1957).
21) Mughabghab,S.F. et al.: 'Neutron Cross Sections', Vol.1 Part
A (Academic Press 1981, New York)
22) Wyman,M.E. et al.: Phys.Rev. 112, 1264(1958).
23) Klein,P.D. et al.: EXFOR 12654,002(1966).
24) Antolkovic,B. et al.: Nucl.Phys. A139, 10(1969).
25) Valkovic,V. et al: Nucl.Phys. A98, 305(1967).
26) Sellem,C. et al.: Nucl.Instrum.Meth. 128, 495(1975).
27) Cserpak,F. et al.: EXFOR 30474,003(1978).
28) Suhaimi,A. et al.: Radiochimica Acta 40, 113(1986).
29) Qaim,S.M. et al.: Proc. Int. Conf. Nucl. Data for Sci. and
Technol., Mito, May 30 - June 3, 1988.
30) Eggler,et al. : In CINDA-A (1935-1976) Vol.1 (1979)
31) Bardes,R. et al.: Phys.Rev. 120, 1369(1960).
32) Siemssen,R.H. et al.: Nucl.Phys. 69, 209(1965).
33) Ribe,F.L. et al.: Phys.Rev. 94, 934(1954).
34) Valkovic,V. et al.: Phys.Rev. 139, B331(1965).
35) Olson,M.D. et al.: Phys.Rev. C30, 1375(1984).
36) Sealock,R.M. et al.: Phys.Rev. C13, 2149(1976).
37) Davis,E.A. et al.: Nucl.Phys. 27, 448(1961).
38) Schrack,R.A. et al.: Nucl.Sci.Eng. 68, 189(1978).
39) Liskien,H. and Wattecamps, E.: Nucl.Sci.Eng. 68, 132(1978).
40) Viesti,G. et al.: Annals Nucl. Energ. 6, 13(1979).
41) Nellis R.O.: Phys.Rev. C1, 847(1970).
42) Nakagawa,T.: JAERI-M 84-103(1984)
43) Ajzenberg S.: Nucl.Phys. A248, 1(1975).
44) Dickens et al. : Proc. Int. Conf. Nucl. Data for Sci.
& Technol., May 30- June 3, 1988, Mito, Japan.
45) Watson,B.A. et al: Phys. Rev. 182, 977(1969)
46) Shibata, K, et al.: JAERI-Research 98-045 (1998).
Table 1 The 2200-m/s and 14 mev cross sections
----------------------------------------------------
2200-m/s (b) 14 MeV (b)
----------------------------------------------------
elastic 2.144 0.943
(n,n') ----- 0.269
(n,p) 0.003 0.038
(n,d) ----- 0.047
(n,t) 0.012 0.095
(n,alpha) 3837.0 0.049
(n,2n) ----- 0.027
capture 0.50 0.000
total 3839.7 1.467
----------------------------------------------------
Table 2 Optical potential parameters
-------------------------------------------------------------
B-10 + n /10/
V= 47.91 - 0.346En, Ws= 0.657 + 0.810En, Vso=5.5 (MeV)
r= 1.387 , rs= 1.336 , rso=1.15 (fm)
a= 0.464 , as= 0.278 , aso=0.5 (fm)
Be-10 + p /45/
V = 60.0 + 27.0(N-Z)/A -0.3Ecm (MeV)
Ws = 0.64Ecm + 10.0(N-Z)/A ,(Ecm < 13.8 MeV) (MeV)
= 9.60-0.06Ecm + 10.0(N-Z)/A ,(Ecm > 13.8 MeV) (MeV)
Vso= 5.5 (MeV)
r = rs = rso = 1.15 (fm)
a = aso = 0.57, as= 0.5 (fm)
Be-9 + d /34/
V= 80.0 , Wv= 30.0 , Vso=6.0 (MeV)
r= 1.0 , rv= 1.0 , rso=1.0 ,rc= 1.3 (fm)
a= 1.0 , av= 0.8 , aso=1.0 (fm)
-------------------------------------------------------------
Table 3 Level schemes used in the DWBA or statistical
model calculation
---------------------------------------------------
B-10 Be-10
---------------------------------------------------
mt energy Jp L mt energy Jp
( MeV ) ( MeV )
2 0.0 3+ 700 0.0 0+
51 0.7183 1+ 2 701 3.368 2+
52 1.7402 0+ 4 702 5.958 2+
53 2.154 1+ 2 703 5.960 1-
54 3.587 2+ 2 704 6.179 0+
55 4.774 3+ 2 705 6.263 2-
56 5.110 2- 3
57 5.163 2+ 2
58 5.18 1+ 2
59 5.920 2+ 2
61 6.025 4+ 2
62 6.127 3- 3
64 6.561 3+ 2
65 6.881 1- 3
66 7.00 1+ 2
7.430 1-
7.470 1+
7.477 2-
7.560 0+
7.670 1+
7.840 1-
8.070 2-
8.650 1+
8.890 3-
8.894 2+
---------------------------------------------------
Table 4 Level density parameters used in the statistical
model calculation
----------------------------------------------------------------
a(1/MeV) t(MeV) c(1/MeV) pair.(MeV) Ex(MeV)
----------------------------------------------------------------
B-10 1.196 5.581 0.066 0.0 16.17
Be-10 1.088 5.866 0.021 5.13 19.63
-----------------------------------------------------------------