4-Be- 9
4-Be- 9 JAEA Eval-Feb09 K.Shibata
JAERI-M 84-226 DIST-MAY10 20100217
----JENDL-4.0 MATERIAL 425
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
HISTORY
84-08 Reevaluated for JENDL-3 by K.Shibata.
Details of the evaluation are given in ref/1/.
89-01 Modified by considering neutron emission spectra
94-02 Evaluated for JENDL Fusion File.
Neutron and alpha emission spectra from the (n,2n)
reaction were calculated and given in MF6.
Elastic angular distributios were modified by taking
account of new measurements.
99-07 DDX above 15 MeV were modified by considering the
measurements /45/.
01-09 Compiled by K.Shibata for JENDL-3.3.
The library was taken from JENDL fusion file.
** modified parts for JENDL-3.3 (change from JENDL FF)****
(1,451) Updated.
(3,251) Deleted.
(6,16) Above 15 MeV.
(4,2) Transformation matrix deleted.
**********************************************************
10-02 Re-evaluated by K.Shibata for JENDL-4.
*** Modified parts for JENDL-4 ***************************
(1,451) Updated
(3,1) Modified
(3,2) Re-calculated
(3,16) Revised near the threshold
(3,102) Thermal cross section was updated.
**********************************************************
MF=1 General Information
MT=451 Descriptive data
MF=2 Resonance Parameter
MT=151 Scattering radius only.
MF=3 Cross Sections
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 6.5119E+00
Elastic 6.5027E+00
n,gamma 8.4909E-03 3.8223E-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MT=1 Sig-t
Below 1 eV, sum of sig-el and sig-cap. Between 1 eV and
830 keV, the cross section was calculated on the basis of
the R-matrix theory. The R-matrix parameters were
obtained so as to give the best fit to the experimental
data /2/-/6/. Above 830 keV, based on the measurements
/5/,/7/,/8/.
***** For JENDL-4 ***************************************
In the energy region from 80 keV to 890 keV, the cross
sections were reduced by considering those of JENDL-2
and the latest experimental data./46/
**********************************************************
MT=2 Sig-el
Below 1 eV, sig-el = 6.151 barns.
Above 1 ev, the cross section was obtained by subtracting
the reaction cross section from the total cross section.
MT=3 Non-elastic
Sum of MT=16,102,104,103,105,107
MT=16
The cross sections were evaluated on the basis of
experimental data /9/-/17/.
***** For JENDL-4 ***************************************
The cross sections near the threshold were modified on the
basis of the measurements/11/.
**********************************************************
MT=102 Capture
Thermal cross section of 8.49E-3 barn was obtained from
the data measured by Conneely et al./18/
1/v curve was assumed over the whole energy range.
MT=103 (n,p)
Calculated with the statistical model.
Neutron potential parameters were taken from the work
of Agee and Rosen /19/:
V = 49.3 - 0.33E, Ws = 5.75 , Vso = 5.5 (MeV)
r = 1.25 , rs = 1.25 , rso = 1.25 (fm)
a = 0.65 , b = 0.70 , aso = 0.65 (fm)
Proton potential parameters are the following /20/:
V = 59.5 - 0.36e, Ws = 12.0 + 0.07E, Vso = 4.9 (MeV)
r = 1.24 , rs = 1.36 , rso = 1.2 (fm)
rc= 1.3 (fm)
a = 0.63 , b = 0.35 , aso = 0.31 (fm)
The cross section was normalized to the experimental data
of Augustson and Menlove /21/, who measured delayed
neutros, by taking account of the branching ratio
of 49.5% for Li-9 => Be-9* => 2a + n.
MT=104 (n,d)
Based on the experimental data of Scobel /22/.
MT=105 (n,t)
Based on experimental data /23/-/27/.
MT=107 (n,a0)
Based on the experimental data /28/-/33/.
MT=251 Mu-bar
Calculated from the data in file4.
MT=700 (n,t0)
Calculated with the statistical model.
Triton potential parameters are the following /34/:
V = 140.0 , Ws = 7.5 , Vso = 6.0 (MeV)
r = 1.20 , rs = 2.69 , rso = 1.20 , rc = 1.30 (fm)
a = 0.45 , b = 0.36 , aso = 0.7 (fm)
Normalization was taken so that the total (n,t) cross
section might be consistent with experimental data.
MT=701 (n,t1)
Total (n,t) - (n,t1)
MF=4 Angular Distributions
MT=2
1.0E-5 eV to 50 keV Isotropic in CM.
50 keV to 17 MeV Based on the experimental data
/35/-/42/.
18 MeV to 20 MeV Optical-model calculations using
the potential parameters of
Agee and Rosen /19/.
MF=6 Double Differential Cross Sections
MT=16
Calculated by taking account of kinematics of
possible reactions. The following reactions were
taken into account:
n + Be-9 -> 2n + Be-8 -> 2n + 2a
-> He-5 + He-5 -> 2n + 2a
-> a + He-6(1.8) -> 2n + 2a
-> n + Be-9(2.4) -> 2n + Be-8 -> 2n + 2a
-> n + Be-9(4.7) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(6.8) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(7.9) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(11.28) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(11.81) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(13.79) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
-> n + Be-9(cont.) -> 2n + Be-8 -> 2n + 2a
-> n + a + He-5 -> 2n + 2a
The branching ratio of each reaction was determined on
the basis of experimental data and of statistical model
calculations.
MT=600
Isotropic angular distribution assumed.
MT=650
Isotropic angular distribution assumed.
MT=700
Isotropic angular distribution assumed.
MT=701
Isotropic angular distribution assumed.
MT=800
Angular distributions were obtained from the work of
Smolec et al./43/
MF=12 Photon-Production Multiplicities
MT=102
Based on the measurements of Jurney /44/.
MF=14 Photon Angular Distributions
MT=102
Assumed to be isotropic.
References
1) Shibata, K.: JAERI-M 84-226 (1984).
2) Bockelman, C.K.: Phys. Rev. 80 (1950) 1011.
3) Hibdon, C.T. and Langsdorf, Jr., A.: Phys. Rev. 98 (1955) 223.
4) Bilpuch, E.G. et al.: Taken from EXFOR (1962).
5) Schwartz, R.B. et al.: Bull. Am. Phys. Soc. 16 (1971) 495.
6) Cabe, J and Cance, M.: CEA-R-4524 (1973).
7) Foster, Jr. D.G. and Glasgow, D.W.: Phys. Rev. C3 (1971) 576.
8) Auchampaugh, G.F. et al.: Nucl. Sci. Eng. 69 (1979) 30.
9) Ashby, V.J. et al.: Phys. Rev. 111 (1958) 616.
10) Catron, H.C. et al.: Phys. Rev. 123 (1961) 218.
11) Holmberg, M. and Hansen, J.: Nucl. Phys. A129 (1969) 305.
12) Bloser, M: Atomkernenergie 20 (1972) 309.
13) Drake, D.M. et al.: Nucl. Sci. Eng. 63 (1977) 401.
14) Auchampaugh G.F. et al.: Proc. Symp. Neutron Cross Sections
from 10 to 40 MeV, BNL, 1977, p.231.
15) Baba, M. et al.: Proc. Int. Conf. Neutron Physics and Nuclear
Data for Reactors and Other Applied Purposes, Harwell 1978,
(1979), p.198.
16) Takahasi, A. et al.: Proc. Int. Conf. Nuclear Data for
Science and Technology, Mito, 1988, p.205 (1988).
17) Baba, M et al.: ibid., p.209 (1988).
18) Conneely, C.M. et al.: Nucl. Instrum. Meth., A248 (1986) 426.
19) Agee, F.P. and Rosen, L.: LA-3538-MS (1966).
20) Votava, H.J. et al.: Nucl. Phys. A204 (1973) 529.
21) Augustson, R.H. and Menlove, H.O.: Nucl. Sci. Eng. 54(1974)190
22) Scobel, W.: Z. Naturforsch. A24 (1969) 1858.
23) Wyman, M.E et al.: Phys. Rev. 112 (1958) 1264.
24) Biro, T. et al.: J. Inorg. Nucl. Chem. 37 (1975) 1583.
25) Body, Z.T. et al.: Proc. Int. Conf. Nuclear Data for
Science and Technology, Antwerp, 1982, p.368 (1982).
26) Liskien, H. et al.: Nucl. Sci. Eng. 98 (1988) 266.
27) Woelfle, R. et al.: Radiochimica Acta 50 (1990) 5.
28) Shibata, K. and Shirato, S.: J. Phys. Soc. Jpn. 52 (1983) 3748
29) Perroud, J.P. and Sellem, Ch.: Nucl. Phys. A227 (1974) 330.
30) Battat, M.E. and Ribe, F.L.: Nucl. Phys. 89 (1953) 80.
31) Stelson, P.H. and Campbell, E.C.: Nucl. Phys. 106 (1957) 1252.
32) Bass, R. et al.: Nucl. Phys. 23 (1961) 122.
33) Paic, G. et al.: Nucl. Phys. A96 (1967) 476.
34) Luedecke, H. et al.: Nucl. Phys. A109 (1968) 676.
35) Marion, J.B. et al.: Phys. Rev. 114 (1959) 1584.
36) Levin, J.S. and Cranberg, L.: Taken from EXFOR (1960).
37) Phillips, D.D.: Taken from EXFOR (1961).
38) Lane, R.O. et al.: Ann. Phys. 12 (1961) 135.
39) Lane, R.O. et al.: Phys. Rev. 133B (1964) 409.
40) Hogue , H.H. et al.: Nucl. Sci. Eng. 68 (1978) 38.
41) Sugimoto, M. et al.: Nucl. Sci. Eng. 103 (1989) 37.
42) Templon, J.A., et al.: Nucl. Sci. Eng. 91 (1985) 451.
43) Smolec, W. et al.: Nucl. Phys. A257 (1976) 397.
44) Jurney, E.T.: Proc. Third Symp. Neutron Capture Gamma Rays,
BNL 1978, (1979), p.46.
45) Ibaraki, M., et al.: J. Nucl. Sci. Technol., 35, 843 (1998).
46) Danon, Y., et al.: Nucl. Sci. Eng., 161, 321 (2009).