97-Bk-249
97-Bk-249 JAEA+ EVAL-FEB10 O.Iwamoto,T.Nakagawa,+
DIST-MAY10 20100323
----JENDL-4.0 MATERIAL 9752
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
07-09 New calculation was made with CCONE code.
Data were compiled as JENDL/AC-2008/1/.
10-02 Data of prompt gamma rays due to fission were given.
10-03 Covariance data were given.
MF= 1 General information
MT=452 Number of Neutrons per fission
Sum of MT's=455 and 456.
MT=455 Delayed neutron data
(Same as JENDL-3.3)
Estimated from Tuttle's systematics/2/.
MT=456 Number of prompt neutrons per fission
(Same as JENDL-3.3)
Estimated from Howerton's sytematics/3/.
MF= 2 Resonance parameters
MT=151
Resolved resonance parameters (MLBW: 1.0E-5 - 60 eV)
(Same as JENDL-3.3)
Resonance energies, neutron and radiative capture widths were
taken from the experimental data of Benjamin et al./4/ For
resonances whose capture width was unknown, the average value
of 0.0357 eV/4/ was adopted. Fission width of 0.0002 eV was
estimated from the thermal fission cross section of 4 b,
which was estimated from the systematics of capture to fission
ratios by Prince/5/. The parameters of a negative resonance
were adjusted so as to reproduce the thermal capture cross
section of 710 b/4/.
Unresolved resonance parameters (60 eV - 30 keV)
Parameters (URP) were determined with ASREP code/6/ so as to
reproduce the cross sections in this energy region. URP are
used only for self-shielding calculations.
Thermal cross sections and resonance integrals (at 300K)
-------------------------------------------------------
0.0253 eV reson. integ.(*)
(barns) (barns)
-------------------------------------------------------
total 718.9
elastic 3.935
fission 3.97 10.1
capture 711.0 1130
-------------------------------------------------------
(*) In the energy range from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
Cross sections above the resolved resonance region were
calculated with CCONE code/7/.
MT= 1 Total cross section
The cross section was calculated with CC OMP of Soukhovitskii
et al./8/.
MT=18 Fission cross section
The experimental data of Silbert/9/, Fomushkin et al./10/ and
Vorotnikov et al./11/ were used to determine the parameters
in the CCONE calculation.
MF= 4 Angular distributions of secondary neutrons
MT=2 Elastic scattering
Calculated with CCONE code/7/.
MT=18 Fission
Isotropic distributions in the laboratory system were assumed.
MF= 5 Energy distributions of secondary neutrons
MT=18 Prompt neutrons
Calculated with CCONE code/7/.
MF= 6 Energy-angle distributions
Calculated with CCONE code/7/.
Distributions from fission (MT=18) are not included.
MF=12 Photon production multiplicities
MT=18 Fission
Calculated from the total energy released by the prompt
gamma-rays due to fission which was estimated from its
systematics, and the average energy of gamma-rays.
MF=14 Photon angular distributions
MT=18 Fission
Isotoropic distributions were assumed.
MF=15 Continuous photon energy spectra
MT=18 Fission
Experimental data measured by Verbinski et al./12/ for
Pu-239 thermal fission were adopted.
MF=31 Covariances of average number of neutrons per fission
MT=452 Number of neutrons per fission
Sum of covariances for MT=455 and MT=456.
MT=455
Error of 15% was assumed.
MT=456
Covariance was obtained by fitting a linear function to the
data at 0.0 and 5.0 MeV with an uncertainty of 10%.
MF=32 Covariances of resonance parameters
MT=151 Resolved resonance parameterss
Format of LCOMP=0 was adopted.
Uncertainties of parameters were taken from Mughabghab /13/.
For the parameters without any information on uncertainty,
the following uncertainties were assumed:
Resonance energy 0.1 %
Neutron width 10 %
Capture width 20 %
Fission width 50 %
They were further modified by considering experimental data
of the capture cross section at the thermal neutron energy.
MF=33 Covariances of neutron cross sections
Covariances were given to all the cross sections by using
KALMAN code/14/ and the covariances of model parameters
used in the cross-section calculations.
Covariances of the total, elastic scattering, fission and
capture cross sections were determined by considering the
experimental data.
In the resolved resonance region, the following standard
deviations were added to the contributions from resonance
parameters:
Elastic scattering 20 %
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Covariances were given only to P1 components.
MF=35 Covariances for Energy Distributions
MT=18 Fission spectra
Estimated with CCONE and KALMAN codes.
*****************************************************************
Calculation with CCONE code
*****************************************************************
Models and parameters used in the CCONE/7/ calculation
1) Coupled channel optical model
Levels in the rotational band were included. Optical model
potential and coupled levels are shown in Table 1.
2) Two-component exciton model/15/
* Global parametrization of Koning-Duijvestijn/16/
was used.
* Gamma emission channel/17/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/18/ was included.
* Neutron, gamma and fission decay channel were included.
* Transmission coefficients of neutrons were taken from
coupled channel calculation in Table 1.
* The level scheme of the target is shown in Table 2.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 3.
* Fission channel:
Double humped fission barriers were assumed.
Fission barrier penetrabilities were calculated with
Hill-Wheler formula/19/. Fission barrier parameters were
shown in Table 4. Transition state model was used and
continuum levels are assumed above the saddles. The level
density parameters for inner and outer saddles are shown in
Tables 5 and 6, respectively.
* Gamma-ray strength function of Kopecky et al/20/,/21/
was used. The prameters are shown in Table 7.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Coupled channel calculation
--------------------------------------------------
* rigid rotor model was applied
* coupled levels = 0,3,5,7,9 (see Table 2)
* optical potential parameters /8/
Volume:
V_0 = 49.97 MeV
lambda_HF = 0.01004 1/MeV
C_viso = 15.9 MeV
A_v = 12.04 MeV
B_v = 81.36 MeV
E_a = 385 MeV
r_v = 1.2568 fm
a_v = 0.633 fm
Surface:
W_0 = 17.2 MeV
B_s = 11.19 MeV
C_s = 0.01361 1/MeV
C_wiso = 23.5 MeV
r_s = 1.1803 fm
a_s = 0.601 fm
Spin-orbit:
V_so = 5.75 MeV
lambda_so = 0.005 1/MeV
W_so = -3.1 MeV
B_so = 160 MeV
r_so = 1.1214 fm
a_so = 0.59 fm
Coulomb:
C_coul = 1.3
r_c = 1.2452 fm
a_c = 0.545 fm
Deformation:
beta_2 = 0.213
beta_4 = 0.066
beta_6 = 0.0015
* Calculated strength function
S0= 1.35e-4 S1= 2.88e-4 R'= 9.05 fm (En=1 keV)
--------------------------------------------------
Table 2. Level Scheme of Bk-249
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 7/2 + *
1 0.00878 3/2 -
2 0.03964 5/2 -
3 0.04179 9/2 + *
4 0.08261 7/2 -
5 0.09374 11/2 + *
6 0.13773 9/2 -
7 0.15583 13/2 + *
8 0.20457 11/2 -
9 0.22925 15/2 + *
10 0.28315 13/2 -
-------------------
*) Coupled levels in CC calculation
Table 3. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Bk-250 19.1626 0.0000 1.8225 0.3135 -0.9672 1.3776
Bk-249 19.0966 0.7605 1.6239 0.3821 -0.8440 2.9526
Bk-248 19.0305 0.0000 1.2435 0.2843 -0.6878 1.0000
Bk-247 18.9645 0.7635 1.3193 0.3836 -0.7996 2.9113
Bk-246 18.8984 0.0000 0.9401 0.2886 -0.6877 1.0000
--------------------------------------------------------
Table 4. Fission barrier parameters
----------------------------------------
Nuclide V_A hw_A V_B hw_B
MeV MeV MeV MeV
----------------------------------------
Bk-250 6.200 0.650 5.550 0.450
Bk-249 6.200 0.800 4.800 0.520
Bk-248 6.200 0.650 5.550 0.450
Bk-247 6.200 0.800 4.800 0.520
Bk-246 6.200 0.650 5.550 0.450
----------------------------------------
Table 5. Level density above inner saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Bk-250 21.4621 0.0000 2.6000 0.3206 -2.4112 2.0000
Bk-249 21.3881 0.8872 2.6000 0.3212 -1.5240 2.8872
Bk-248 21.3142 0.0000 2.6000 0.3218 -2.4112 2.0000
Bk-247 21.2402 0.8908 2.6000 0.3224 -1.5204 2.8908
Bk-246 21.1662 0.0000 2.6000 0.3230 -2.4113 2.0000
--------------------------------------------------------
Table 6. Level density above outer saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Bk-250 21.4621 0.0000 1.0000 0.3495 -1.7100 2.0000
Bk-249 21.3881 0.8872 0.9600 0.3506 -0.8222 2.8872
Bk-248 21.3142 0.0000 0.9200 0.3517 -1.7088 2.0000
Bk-247 21.2402 0.8908 0.8800 0.3529 -0.8175 2.8908
Bk-246 21.1662 0.0000 0.8400 0.3540 -1.7077 2.0000
--------------------------------------------------------
Table 7. Gamma-ray strength function for Bk-250
--------------------------------------------------------
K0 = 1.500 E0 = 4.500 (MeV)
* E1: ER = 11.37 (MeV) EG = 2.70 (MeV) SIG = 254.23 (mb)
ER = 14.27 (MeV) EG = 4.17 (MeV) SIG = 508.46 (mb)
* M1: ER = 6.51 (MeV) EG = 4.00 (MeV) SIG = 1.82 (mb)
* E2: ER = 10.00 (MeV) EG = 3.11 (MeV) SIG = 7.20 (mb)
--------------------------------------------------------
References
1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009).
2) R.J.Tuttle: INDC(NDS)-107/G+Special, p.29 (1979).
3) R.J.Howerton: Nucl. Sci. Eng., 62, 438 (1977).
4) R.W.Benjamin et al.: Nucl. Sci. Eng., 85, 261 (1983).
5) A.Prince: Trans. Am. Nucl. Soc., 10, 228 (1967).
6) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese.
7) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
8) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005).
9) M.G.Silbert: Nucl. Sci. Eng., 63, 198 (1977).
10) E.F.Fomushkin et al.: Yadernaya Fizika, 14, 73 (1971).
11) P.E.Vorotnikov et al.: Nucl. Phys., A150, 56 (1970).
12) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973).
13) S.F.Mughabghab: "Atlas of Neutron Resonances," Elsevier
(2006).
14) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
15) C.Kalbach: Phys. Rev. C33, 818 (1986).
16) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
17) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
18) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
19) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953).
20) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
21) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).