48-Cd-106
48-Cd-106 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
DIST-MAY10 20100316
----JENDL-4.0 MATERIAL 4825
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 Re-evaluation was performed for JENDL-4.0
The resolved resonance parameters were not changed
from JENDL-3.3
10-03 Compiled by S.Kunieda
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
- Resolved resonance region (MLBW formula): below 700 eV
Resonance parameters were based on Mughabghab et al./1/
Neutron orbital angular momentum L of some resonances was
estimated with a method of Bollinger and Thomas/2/.
Average radiation width of 0.153 eV was determined from the
experimental data of Musgrove et al./3/ above 2.6 keV.
Scattering radius of 6.5 fm was adopted from the systematics
of measured values. A negative resonance was added so as to
reproduce the thermal capture cross section given by
Mughabghab et al.
***** For JENDL-3.3 *************************************
R was changed from 6.5fm to 6.2fm so as to reproduce
measured elemental total cross sections.
***********************************************************
No update was made for JENDL-4.0.
- Unresolved resonance region: 700 eV - 300 keV
The parameters were obtained by fitting to the total and
capture cross sections calculated by the POD code /4/.
The ASREP code /5/ was employed in this evaluation.
The unresolved parameters should be used only for
self-shielding calculation.
Thermal cross sections & resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 6.02808E+00
Elastic 5.05825E+00
n,gamma 9.69829E-01 9.13937E+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
The OPTMAN /6/ & POD /4/ calculations.
MT= 3 Non-elastic cross section
Sum of partial non-elastic cross sections.
MT= 4,51-91 (n,n') cross section
The OPTMAN /6/ & POD /4/ calculations.
MT= 16 (n,2n) cross section
MT= 17 (n,3n) cross section
MT= 22 (n,na) cross section
MT= 28 (n,np) cross section
MT= 32 (n,nd) cross section
Calculated by the POD code /4/.
MT=102 Capture cross section
Calculated by the POD code /4/. The value of gamma-ray
strength function was determined to reproduce experimental
capture cross sections measured by Musgrove et al /3/.
MT=103 (n,p) cross section
MT=104 (n,d) cross section
MT=105 (n,t) cross section
MT=106 (n,He3) cross section
MT=107 (n,a) cross section
Calculated by the POD code /4/.
MT=203 (n,xp) cross section
Sum of (n,np) and (n,p)
MT=204 (n,xd) cross section
Sum of (n,nd) and (n,d)
MT=205 (n,xt) cross section
MT=206 (n,xHe3) cross section
Calculated by the POD code /4/.
MT=207 (n,xa) cross section
Sum of (n,na) and (n,a)
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
The OPTMAN /6/ & POD /4/ calculations.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
MT= 17 (n,3n) reaction
MT= 22 (n,na) reaction
MT= 28 (n,np) reaction
MT= 32 (n,nd) reaction
Neutron spectra calculated by the POD code /4/.
MT= 51-90 (n,n') reaction
Neutron angular distributions calculated by
OPTMAN /6/ & POD /4/.
MT= 91 (n,n') reaction
Neutron spectra calculated by the POD code /4/.
MT= 203 (n,xp) reaction
MT= 204 (n,xd) reaction
MT= 205 (n,xt) reaction
MT= 206 (n,xHe3) reaction
MT= 207 (n,xa) reaction
Light-ion spectra calculated by the POD code /6/.
MF=12 Gamma-ray multiplicities
MT= 3 Non-elastic gamma emission
Calculated by the POD code /4/.
MF=14 Gamma-ray angular distributions
MT= 3 Non-elastic gamma emission
Assumed to be isotropic.
MF=15 Gamma-ray spectra
MT= 3 Non-elastic gamma emission
Calculated by the POD code /4/.
***************************************************************
* Nuclear Model Calculations with POD Code /4/ *
***************************************************************
1. Theoretical models
The POD code is based on the spherical optical model, the
distorted-wave Born approximaiton (DWBA), one-component exciton
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-
tical model. With the preequilibrium model, semi-empirical
pickup and knockout process can be taken into account for
composite-particle emission. The gamma-ray emission from the
compound nucleus can be calculated within the framework of the
exciton model. The code is capable of reading in particle
transmission coefficients calculated by separate spherical or
coupled-channel optical model code. In this evaluation, the OPTMAN
code /6/ was employed for neutrons, while the ECIS code
/7/ was adopted for charged particles.
2. Optical model & parameters
Neutrons:
Model: The coupled-channel method based on the soft-rotor
model was adopted. The Hamiltonian parameters were
identical to those reported in ref /8/. Note,
deformation parameters were slightly changed from the
original values.
OMP : Coupled-channel optical potential /9/ was applied.
The original parameters were slightly modified to give
precise reaction cross sections. The optical potential
parameters used in evaluation are listed as follows.
------------------------------------------------------------
- Real-volume term
VR0= -3.79E+1 MeV VR1= 2.70E-2 MeV VR2= 1.20E-4 MeV
VR3= 3.50E-7 MeV VRLA= 9.49E+1 MeV ALAVR= 4.34E-3
r= 1.21E+0 a= 6.50E-1
- Imaginary-surface term
WDBW= 1.30E+1 MeV WDWID= 1.50E+1 MeV ALAWD= 1.40E-2
r= 1.21E+0 a= 6.00E-1
- Imaginary-volume term
WCBW= 1.70E+1 MeV WCWID= 9.95E+1 MeV
r= 1.21E+0 a= 6.00E-1
- Spin-orbit term
VS= 6.54E+0 MeV ALASO= 5.00E-3
WSBW= -3.10E+0 MeV WSWID= 1.60E+2 MeV
r= 1.04E+0 a= 5.90E-1
- Isospin coefficients
CISO= 2.43E+1 WCISO= 1.80E+1 CCOUL= 9.00E-1
------------------------------------------------------------
Protons:
Model: Spherical
OMP : Koning and Delaroche /10/
Deuterons:
Model: Spherical
OMP : Bojowald et al. /11/
Tritons:
Mode: Spherical
OMP : Becchetti and Greenlees /12/
He-3:
Model: Spherical
OMP : Becchetti and Greenlees /12/
Alphas:
Model: Spherical
OMP : A simplified folding model potential /13/
(The nucleon OMP was taken from Ref./9/.)
3. Level scheme of Cd-106
------------------------------------
No. Ex(MeV) J PI CC
------------------------------------
0 0.00000 0 + *
1 0.63264 2 + *
2 1.49378 4 +
3 1.71653 2 +
4 1.79525 0 +
5 2.10453 4 +
6 2.14406 0 +
7 2.25220 4 +
8 2.25400 3 +
9 2.30492 4 +
10 2.33056 5 +
11 2.33855 4 +
12 2.34755 2 +
13 2.37062 2 +
14 2.37850 3 - *
15 2.46842 4 +
16 2.48572 2 +
17 2.49166 6 +
------------------------------------
Levels above 2.50166 MeV are assumed to be continuous.
4. Level density parameters
Energy-dependent parameters of Mengoni-Nakajima /14/ were used
----------------------------------------------------------
Nuclei a* Pair Esh T E0 Ematch Elv_max
1/MeV MeV MeV MeV MeV MeV MeV
----------------------------------------------------------
Cd-107 15.000 1.160 0.354 0.718 -1.112 7.146 0.999
Cd-106 13.484 2.331 -0.596 0.872 -0.570 9.864 2.492
Cd-105 14.058 1.171 -1.067 0.896 -2.152 9.326 1.182
Cd-104 13.269 2.353 -2.181 0.913 0.018 9.396 2.435
Ag-106 13.429 0.000 1.253 0.756 -2.357 6.276 0.809
Ag-105 12.801 1.171 0.747 0.882 -2.136 9.235 1.757
Ag-104 13.216 0.000 -0.148 0.884 -3.146 7.874 0.270
Pd-104 13.269 2.353 1.161 0.810 -0.541 9.540 2.245
Pd-103 13.844 1.182 0.655 0.767 -1.277 7.616 1.069
Pd-102 13.053 2.376 -0.374 0.871 -0.389 9.710 2.480
----------------------------------------------------------
5. Gamma-ray strength functions
M1, E2: Standard Lorentzian (SLO)
E1 : Generalized Lorentzian (GLO) /15/
6. Preequilibrium process
Preequilibrium is on for n, p, d, t, He-3, and alpha.
Preequilibrium capture is on.
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Bollinger, L.M. and Thomas, G.E.: Phys. Rev., 171,1293(1968).
3) Musgrove, A.R. de L., et al.: J. Phsics pt G, 4, 771 (1978).
4) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).
5) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).
7) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).
8) S.Kunieda et al., J. Nucl. Sci. Technol. 46, 914 (2009).
9) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).
10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
11) Bojowald et al., Phys. Rev. C 38, 1153 (1988).
12) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization
Phenomena in Nuclear Reactions," p.682, The University
of Wisconsin Press (1971).
13) D.G.Madland, NEANDC-245 (1988), p. 103.
14) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151
(1994).
15) M.Brink, Ph.D thesis, Oxford University, 1955.