48-Cd-108

 48-Cd-108 JAEA       EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
                      DIST-MAY10                       20100316   
----JENDL-4.0         MATERIAL 4831                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
09-11 Re-evaluation was performed for JENDL-4.0                   
10-03 Compiled by S.Kunieda                                       
                                                                  
MF= 1 General information                                         
                                                                  
  MT=451 Descriptive data and directory                           
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
                                                                  
  MT=151 Resolved and unresolved resonance parameters             
                                                                  
    - Resolved resonance region (MLBW formula): below 380 eV      
        Resonance parameters were based on the experimental data  
      of Anufriev et al./1/  Neutron orbital angular momentum     
      L was estimated with a method of Bollinger and Thomas/2/.   
      Scattering radius of 6.5 fm was assumed from the systematics
      of measured values for neighboring nuclides.  A negative    
      resonance was added so as to reproduce the thermal capture  
      cross section given by Mughabghab et al./3/                 
        In JENDL-3.3, R was changed from 6.5fm to 6.2fm so as to  
      reproduce measured elemental total cross sections.          
        In JENDL-4, the energy of the negative resonance was      
      changed to -700 eV so as to reproduce the thermal capture   
      cross section recommended by Mughabghab./4/                 
                                                                  
    - Unresolved resonance region: 380 eV - 300 keV               
        The parameters were obtained by fitting to the total and  
      capture cross sections calculated by the POD code /5/.      
      The ASREP code /6/ was employed in this evaluation.         
      The unresolved parameters should be used only for           
      self-shielding calculation.                                 
                                                                  
     Thermal cross sections & resonance integrals at 300 K        
      ----------------------------------------------------------  
                       0.0253 eV           res. integ. (*)        
                        (barns)              (barns)              
      ----------------------------------------------------------  
       Total          5.35544E+00                                 
       Elastic        4.56867E+00                                 
       n,gamma        7.86762E-01           2.53116E+01           
      ----------------------------------------------------------  
      (*) Integrated from 0.5 eV to 10 MeV.                       
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
                                                                  
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
  MT= 16 (n,2n) cross section                                     
  MT= 17 (n,3n) cross section                                     
  MT= 22 (n,na) cross section                                     
  MT= 28 (n,np) cross section                                     
  MT= 32 (n,nd) cross section                                     
    Calculated by the POD code /5/.                               
                                                                  
  MT=102 Capture cross section                                    
    Calculated by the POD code /5/. The value of gamma-ray        
    strength function was determined to reproduce experimental    
    capture cross sections measured by Musgrove et al /8/.        
                                                                  
  MT=103 (n,p) cross section                                      
  MT=104 (n,d) cross section                                      
  MT=105 (n,t) cross section                                      
  MT=106 (n,He3) cross section                                    
  MT=107 (n,a) cross section                                      
    Calculated by the POD code /5/.                               
                                                                  
  MT=203 (n,xp) cross section                                     
    Sum of (n,np) and (n,p)                                       
                                                                  
  MT=204 (n,xd) cross section                                     
    Sum of (n,nd) and (n,d)                                       
                                                                  
  MT=205 (n,xt) cross section                                     
  MT=206 (n,xHe3) cross section                                   
    Calculated by the POD code /5/.                               
                                                                  
  MT=207 (n,xa) cross section                                     
    Sum of (n,na) and (n,a)                                       
                                                                  
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
                                                                  
  MT=  2 Elastic scattering                                       
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
                                                                  
  MT= 16 (n,2n) reaction                                          
  MT= 17 (n,3n) reaction                                          
  MT= 22 (n,na) reaction                                          
  MT= 28 (n,np) reaction                                          
  MT= 32 (n,nd) reaction                                          
    Neutron spectra calculated by the POD code /5/.               
                                                                  
  MT= 51-90 (n,n') reaction                                       
    Neutron angular distributions calculated by                   
    OPTMAN /7/ & POD /5/.                                         
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated by the POD code /5/.               
                                                                  
  MT= 203 (n,xp) reaction                                         
  MT= 204 (n,xd) reaction                                         
  MT= 205 (n,xt) reaction                                         
  MT= 206 (n,xHe3) reaction                                       
  MT= 207 (n,xa) reaction                                         
    Light-ion spectra calculated by the POD code /6/.             
                                                                  
                                                                  
MF=12 Gamma-ray multiplicities                                    
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /5/.                               
                                                                  
                                                                  
MF=14 Gamma-ray angular distributions                             
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
                                                                  
MF=15 Gamma-ray spectra                                           
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /5/.                               
                                                                  
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /5/     *       
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrium model, semi-empirical       
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code. In this evaluation, the OPTMAN
code /7/ was employed for neutrons, while the ECIS code           
/9/ was adopted for charged particles.                            
                                                                  
2. Optical model & parameters                                     
  Neutrons:                                                       
    Model: The coupled-channel method based on the soft-rotor     
           model was adopted. The Hamiltonian parameters were     
           identical to those reported in ref /10/.               
    OMP  : Coupled-channel optical potential /11/ was applied.    
           The original parameters were slightly modified to give 
           precise reaction cross sections. The optical potential 
           parameters used in evaluation are listed as follows.   
     ------------------------------------------------------------ 
     - Real-volume term                                           
       VR0= -3.80E+1 MeV   VR1=   2.70E-2 MeV   VR2=  1.20E-4 MeV 
       VR3=  3.50E-7 MeV   VRLA=  9.49E+1 MeV   ALAVR=  4.33E-3   
       r= 1.21E+0     a=  6.30E-1                                 
     - Imaginary-surface term                                     
       WDBW=  1.30E+1 MeV   WDWID=  1.50E+1 MeV   ALAWD=  1.40E-2 
       r= 1.21E+0     a=  6.00E-1                                 
     - Imaginary-volume term                                      
       WCBW=  1.70E+1 MeV   WCWID=  1.00E+2 MeV                   
       r= 1.21E+0     a=  6.00E-1                                 
     - Spin-orbit term                                            
       VS=    6.25E+0 MeV   ALASO=  5.00E-3                       
       WSBW= -3.10E+0 MeV   WSWID=  1.60E+2 MeV                   
       r= 1.04E+0     a=  5.90E-1                                 
     - Isospin coefficients                                       
       CISO=   2.43E+1   WCISO=  1.80E+1   CCOUL=  9.00E-1        
     ------------------------------------------------------------ 
  Protons:                                                        
    Model: Spherical                                              
    OMP  : Koning and Delaroche /12/                              
  Deuterons:                                                      
    Model: Spherical                                              
    OMP  : Bojowald et al. /13/                                   
  Tritons:                                                        
    Mode: Spherical                                               
    OMP : Becchetti and Greenlees /14/                            
  He-3:                                                           
    Model: Spherical                                              
    OMP  : Becchetti and Greenlees /14/                           
  Alphas:                                                         
    Model: Spherical                                              
    OMP  : A simplified folding model potential /15/              
           (The nucleon OMP was taken from Ref./11/.)             
                                                                  
3. Level scheme of Cd-108                                         
  ------------------------------------                            
   No.   Ex(MeV)     J  PI      CC                                
  ------------------------------------                            
    0    0.00000     0   +       *                                
    1    0.63299     2   +       *                                
    2    1.50846     4   +                                        
    3    1.60184     2   +                                        
    4    1.72065     0   +                                        
    5    1.91343     0   +                                        
    6    2.14585     3   +                                        
    7    2.16272     2   +                                        
    8    2.20222     3   -       *                                
    9    2.23935     4   +                                        
   10    2.36577     2   +                                        
   11    2.37456     0   +                                        
   12    2.48630     2   +                                        
   13    2.54138     6   +                                        
   14    2.55523     2   +                                        
   15    2.56522     5   +                                        
   16    2.60165     5   -                                        
   17    2.61997     2   +                                        
   18    2.64562     4   +                                        
   19    2.67799     1   -                                        
  ------------------------------------                            
  Levels above  2.68799 MeV are assumed to be continuous.         
                                                                  
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /16/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  Cd-109  15.088  1.149  1.603  0.656 -0.917  6.585  1.173        
  Cd-108  13.699  2.309  0.690  0.771 -0.106  8.748  2.678        
  Cd-107  15.000  1.160  0.354  0.718 -1.112  7.146  0.999        
  Cd-106  13.484  2.331 -0.596  0.872 -0.570  9.864  2.492        
  Ag-108  14.291  0.000  2.527  0.662 -2.137  5.542  0.408        
  Ag-107  13.008  1.160  1.978  0.773 -1.460  7.846  1.147        
  Ag-106  13.429  0.000  1.253  0.756 -2.357  6.276  0.809        
  Pd-106  13.484  2.331  2.347  0.713  0.011  8.343  2.485        
  Pd-105  14.058  1.171  2.073  0.743 -1.698  7.986  0.808        
  Pd-104  13.269  2.353  1.161  0.810 -0.541  9.540  2.245        
  ----------------------------------------------------------      
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /17/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
                                                                  
References                                                        
 1) Anufriev, V.A. et al.: Atomnaya Energiya, 57, 59 (1984).      
 2) Bollinger, L.M. and Thomas, G.E.: Phys. Rev., 171,1293(1968). 
 3) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,     
    Part A", Academic Press (1981).                               
 4) S.F.Mughabghab, "Atlas of Neutron Resonances",                
    Elsevier (2006).                                              
 5) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
 6) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)               
    [in Japanese].                                                
 7) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).       
 8) Musgrove, A.R. de L., et al.: J. Phsics pt G, 4, 771 (1978).  
 9) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).               
10) S.Kunieda et al., J. Nucl. Sci. Technol. 46, 914 (2009).      
11) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
12) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
13) Bojowald et al., Phys. Rev. C 38, 1153 (1988).                
14) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
15) D.G.Madland, NEANDC-245 (1988), p. 103.                       
16) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
     (1994).                                                      
17) M.Brink, Ph.D thesis, Oxford University, 1955.