58-Ce-140

 58-Ce-140 JAEA       EVAL-FEB10 S.Kunieda, A.Ichihara, K.Shibata+
                      DIST-MAY10                       20100223   
----JENDL-4.0         MATERIAL 5837                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
10-02 Re-evaluation was performed for JENDL-4 above the resoloved 
      resonance region. The resonance parameters are the same as  
      those of JENDL-3.3 (compiled by S. Kunieda).                
                                                                  
MF= 1 General information                                         
                                                                  
  MT=451 Descriptive data and directory                           
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
                                                                  
  MT=151 Resolved and unresolved resonance parameters             
                                                                  
    - Resolved resonance region (MLBW formula): below 200 keV     
        For JENDL-2, the resonance parameters were evaluated by   
      Kikuchi /1/. Neutron widths were obtained from data         
      measured by Hacken et al. /2/ and Camarda /3/, and          
      radiation widths from capture areas by Musgrove et al.      
      /4/ For the resonances only whose capture area was          
      measured, the neutron width was deduced by assuming the     
      average radiation width of 0.034+-0.029 eV for s-wave       
      resonances and 0.029+-0.008 eV for p-wave ones.  A negative 
      resonance was added so as to reproduce the capture cross    
      section of 0.57+-0.04 barn and the elastic scattering cross 
      section of 2.83+-0.11 barns at 0.0253 eV /5/.               
        For JENDL-3.2, neutron widths of 14 resonances were       
      replaced with experimental data obtained by Ohkubo /6/      
      in the energy range from 2.5437 keV to 55.113 keV.          
      Parameters of the negative resonance were re-adjusted to the
      above thermal cross sections /5/.                           
        For JENDL-3.3, neutron widths of 2.5- to 55- keV levels   
      were modified on the basis of Ohkubo et al. /7/. Capture    
      widths of all levels were multiplied by a factor of 1.4 so  
      as to be consistent with a new capture cross section        
      measurement /8/. A negative level was modified and 1/v      
      corresction was aplied to the capture cross section.        
        No further update was made for JENDL-4.                   
                                                                  
    - No unresolved resonance parameters are given.               
                                                                  
   Thermal cross sections & resonance integrals at 300 K          
    ----------------------------------------------------------    
                     0.0253 eV           res. integ. (*)          
                      (barns)              (barns)                
    ----------------------------------------------------------    
     Total          3.46643E+00                                   
     Elastic        2.89398E+00                                   
     n,gamma        5.70396E-01           3.44622E-01             
    ----------------------------------------------------------    
    (*) Integrated from 0.5 eV to 10 MeV.                         
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
                                                                  
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    The OPTMAN /9/ & POD calculations /10/.                       
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    The OPTMAN /9/ & POD calculations /10/.                       
                                                                  
  MT= 16 (n,2n) cross section                                     
  MT= 17 (n,3n) cross section                                     
  MT= 22 (n,na) cross section                                     
  MT= 28 (n,np) cross section                                     
  MT= 32 (n,nd) cross section                                     
    Calculated by the POD code /10/.                              
                                                                  
  MT=102 Capture cross section                                    
    Calculated by the POD code /10/. Gamma-ray strength           
    function was normalized to fit the experimental cross         
    sections measured by Harnood et al /8/.                       
                                                                  
  MT=103 (n,p) cross section                                      
  MT=104 (n,d) cross section                                      
  MT=105 (n,t) cross section                                      
  MT=106 (n,He3) cross section                                    
  MT=107 (n,a) cross section                                      
    Calculated by the POD code /10/.                              
                                                                  
  MT=203 (n,xp) cross section                                     
    Sum of (n,np) and (n,p)                                       
                                                                  
  MT=204 (n,xd) cross section                                     
    Sum of (n,nd) and (n,d)                                       
                                                                  
  MT=205 (n,xt) cross section                                     
  MT=206 (n,xHe3) cross section                                   
    Calculated by the POD code /10/.                              
                                                                  
  MT=207 (n,xa) cross section                                     
    Sum of (n,na) and (n,a)                                       
                                                                  
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
                                                                  
  MT=  2 Elastic scattering                                       
    The OPTMAN /9/ & POD calculations /10/.                       
                                                                  
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
                                                                  
  MT= 16 (n,2n) reaction                                          
  MT= 17 (n,3n) reaction                                          
  MT= 22 (n,na) reaction                                          
  MT= 28 (n,np) reaction                                          
  MT= 32 (n,nd) reaction                                          
    Neutron spectra calculated by the POD code /10/.              
                                                                  
  MT= 51-90 (n,n') reaction                                       
    Neutron angular distributions calculated by                   
    OPTMAN /9/ & POD /10/.                                        
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated by the POD code /10/.              
                                                                  
  MT= 203 (n,xp) reaction                                         
  MT= 204 (n,xd) reaction                                         
  MT= 205 (n,xt) reaction                                         
  MT= 206 (n,xHe3) reaction                                       
  MT= 207 (n,xa) reaction                                         
    Light-ion spectra calculated by the POD code /6/.             
                                                                  
                                                                  
MF=12 Gamma-ray multiplicities                                    
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /10/.                              
                                                                  
                                                                  
MF=14 Gamma-ray angular distributions                             
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
                                                                  
MF=15 Gamma-ray spectra                                           
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /10/.                              
                                                                  
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /10/     *      
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrium model, semi-empirical       
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code. In this evaluation, the OPTMAN
code /9/ was employed for neutrons, while the ECIS code           
/11/ was adopted for charged particles.                           
                                                                  
2. Optical model & parameters                                     
  Neutrons:                                                       
    Model: Coupled-channel model based on the rigid-rotor model   
    OMP  : Based on the Coupled-channel optical potential /12/    
           The original Parameters were slightly modified as      
           listed below to reproduce experimental total cross     
           sections measured by Camarda et al /13/.               
     ------------------------------------------------------------ 
     - Real-volume term                                           
       VR0= -3.85E+1 MeV   VR1=   2.70E-2 MeV   VR2=  1.20E-4 MeV 
       VR3=  3.50E-7 MeV   VRLA=  9.49E+1 MeV   ALAVR=  4.22E-3   
       r= 1.21E+0     a=  6.30E-1                                 
     - Imaginary-surface term                                     
       WDBW=  1.30E+1 MeV   WDWID=  1.40E+1 MeV   ALAWD=  1.40E-2 
       r= 1.21E+0     a=  6.75E-1                                 
     - Imaginary-volume term                                      
       WCBW=  1.70E+1 MeV   WCWID=  1.05E+2 MeV                   
       r= 1.21E+0     a=  6.75E-1                                 
     - Spin-orbit term                                            
       VS=    6.34E+0 MeV   ALASO=  5.00E-3                       
       WSBW= -3.10E+0 MeV   WSWID=  1.60E+2 MeV                   
       r= 1.05E+0     a=  5.90E-1                                 
     - Isospin coefficients                                       
       CISO=   2.43E+1   WCISO=  1.80E+1   CCOUL=  9.00E-1        
     - Deformation parameter                                      
       Beta2=   1.60E-1                                           
     ------------------------------------------------------------ 
  Protons:                                                        
    Model: Spherical                                              
    OMP  : Koning and Delaroche /14/                              
  Deuterons:                                                      
    Model: Spherical                                              
    OMP  : Bojowald et al. /15/                                   
  Tritons:                                                        
    Mode: Spherical                                               
    OMP : Becchetti and Greenlees /16/                            
  He-3:                                                           
    Model: Spherical                                              
    OMP  : Becchetti and Greenlees /16/                           
  Alphas:                                                         
    Model: Spherical                                              
    OMP  : A simplified folding model potential /17/              
           (The nucleon OMP was taken form Ref./12/.)             
                                                                  
3. Level scheme of Ce-140                                         
  ------------------------------------                            
   No.   Ex(MeV)     J  PI      CC                                
  ------------------------------------                            
    0    0.00000     0   +       *                                
    1    1.59623     2   +       *                                
    2    1.90331     0   +                                        
    3    2.08325     4   +                                        
    4    2.10785     6   +                                        
    5    2.34788     2   +                                        
    6    2.34981     5   +                                        
    7    2.41201     3   +                                        
    8    2.46408     3   -                                        
    9    2.48092     4   +                                        
  ------------------------------------                            
  Levels above  2.49092 MeV are assumed to be continuous.         
                                                                  
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /18/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  Ce-141  17.686  1.011 -1.072  0.493  0.659  3.613  1.942        
  Ce-140  17.074  2.028 -1.942  0.640  0.903  6.384  2.481        
  Ce-139  17.607  1.018 -1.120  0.492  0.694  3.570  1.985        
  Ce-138  16.866  2.043 -0.407  0.654  0.240  7.301  2.237        
  La-140  17.665  0.000 -1.411  0.615 -1.257  4.391  0.602        
  La-139  16.263  1.018 -2.218  0.812 -1.629  8.151  1.257        
  La-138  16.770  0.000 -1.494  0.612 -0.947  3.973  0.642        
  Ba-138  16.830  2.043 -3.130  0.710  0.829  6.866  3.155        
  Ba-137  18.884  1.025 -2.239  0.463  0.926  3.110  1.908        
  Ba-136  16.959  2.058 -1.396  0.750 -0.538  8.774  2.223        
  ----------------------------------------------------------      
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /19/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
                                                                  
References                                                        
 1) Kikuchi Y. et al.: JAERI-M 86-030 (1986).                     
 2) Hacken G., et al.: USNDC-11, 79 (1974).                       
 3) Camarda H.S.: Phys. Rev., C18, 1254 (1978).                   
 4) Musgrove A.R. de L., et al.: Aust. J. Phys., 32, 213 (1979).  
 5) Mughabghab S.F. et al.: "Neutron Cross Sections, Vol. I,      
    Part A", Academic Press (1981).                               
 6) Ohkubo M. et al.: Proc. Int. Conf. on Nuclear Data for Basic  
    and Applied Science, Santa-Fe., Vol.2, p.1623 (1985).         
 7) Ohkubu M., et al.: JAERI-M 93-012 (1993).                     
 8) Harnood S., et al.: J. Nucl. Sci. Technol., 37, 740 (2000).   
 9) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).       
10) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
11) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).               
12) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
13) Camarda et al., Phys. Rev. C 29, 2106 (1984).                 
14) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
15) Bojowald et al., Phys. Rev. C 38, 1153 (1988).                
16) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
17) D.G.Madland, NEANDC-245 (1988), p. 103.                       
18) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
     (1994).                                                      
19) M.Brink, Ph.D thesis, Oxford University, 1955.