98-Cf-254
98-Cf-254 JAEA+ EVAL-FEB10 O.Iwamoto, T.Nakagawa, et al.
DIST-MAY10 20100304
----JENDL-4.0 MATERIAL 9867
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
07-09 Theoretical calculation was performed with CCONE code.
Data were compiled as JENDL/AC-2008/1/.
10-02 Data of prompt gamma rays due to fission were given.
10-03 Covariance data were given.
MF=1 General information
MT=452 Number of Neutrons per fission
Sum of MT's=455 and 456.
MT=455 Delayed neutron data
(Same as JENDL-3.3)
Estimated from systematics by Tuttle/2/, Benedetti et al./3/
and Waldo et al./4/
MT=456 Number of prompt neutrons per fission
(Same as JENDL-3.3)
Estimated from Howerton's sytematics/5/.
MF= 2 Resonance parameters
MT=151
No resonance parameters are given.
Thermal cross sections and resonance integrals (at 300K)
-------------------------------------------------------
0.0253 eV reson. integ.(*)
(barns) (barns)
-------------------------------------------------------
total 17.26
elastic 10.72
fission 2.00 103
capture 4.50 37.2
-------------------------------------------------------
(*) In the energy range from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
Below 13 eV:
* Elastic scattering cross section is 10.7 b calculated from
scattering radius of 9.236 fm/6/.
* Fission cross section is in the 1/v shape, and 2 b at
0.0253 eV was estimated from systematics.
* Capture cross section is in the 1/v shape, and 4.5 b at
0.0253 eV which was measured by Lougheed et al./7/
Above 13 eV:
Cross sections were calculated with CCONE code/6/.
MT= 1 Total cross section
The cross section was calculated with CC OMP of Soukhovitskii
et al./8/
MF= 4 Angular distributions of secondary neutrons
MT=2 Elastic scattering
Calculated with CCONE code/6/.
MT=18 Fission
Isotropic distributions in the laboratory system were assumed.
MF= 5 Energy distributions of secondary neutrons
MT=18 Prompt netrons
Calculated with CCONE code/6/.
MF= 6 Energy-angle distributions
Calculated with CCONE code/6/.
Distributions from fission (MT=18) are not included.
MF=12 Photon production multiplicities
MT=18 Fission
Calculated from the total energy released by the prompt
gamma-rays due to fission which was estimated from its
systematics, and the average energy of gamma-rays.
MF=14 Photon angular distributions
MT=18 Fission
Isotoropic distributions were assumed.
MF=15 Continuous photon energy spectra
MT=18 Fission
Experimental data measured by Verbinski et al./9/ for
Pu-239 thermal fission were adopted.
MF=31 Covariances of average number of neutrons per fission
MT=452 Number of neutrons per fission
Sum of covariances for MT=455 and MT=456.
MT=455
Error of 15% was assumed.
MT=456
Covariance was obtained by fitting a linear function to the
at 0.0 and 5.0 MeV with an uncertainty of 10%.
MF=33 Covariances of neutron cross sections
Covariances were given to all the cross sections by using
KALMAN code/10/ and the covariances of model parameters
used in the cross-section calculations.
For the following cross sections, standard deviations in the
energy region below 13 eV were assumed as follows:
Total 34 %
Elastic scattering 50 %
Fission 50 %
Capture 50 %
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Covariances were given only to P1 components.
MF=35 Covariances for Energy Distributions
MT=18 Fission spectra
Estimated with CCONE and KALMAN codes.
*****************************************************************
Calculation with CCONE code
*****************************************************************
Models and parameters used in the CCONE/6/ calculation
1) Coupled channel optical model
Levels in the rotational band were included. Optical model
potential and coupled levels are shown in Table 1.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/14/ was included.
* Neutron, gamma and fission decay channel were included.
* Transmission coefficients of neutrons were taken from
coupled channel calculation in Table 1.
* The level scheme of the target is shown in Table 2.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 3.
* Fission channel:
Double humped fission barriers were assumed.
Fission barrier penetrabilities were calculated with
Hill-Wheler formula/15/. Fission barrier parameters were
shown in Table 4. Transition state model was used and
continuum levels are assumed above the saddles. The level
density parameters for inner and outer saddles are shown in
Tables 5 and 6, respectively.
* Gamma-ray strength function of Kopecky et al/16/,/17/
was used. The prameters are shown in Table 7.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Coupled channel calculation
--------------------------------------------------
* rigid rotor model was applied
* coupled levels = 0,1,2,3,4 (see Table 2)
* optical potential parameters /8/
Volume:
V_0 = 49.97 MeV
lambda_HF = 0.01004 1/MeV
C_viso = 15.9 MeV
A_v = 12.04 MeV
B_v = 81.36 MeV
E_a = 385 MeV
r_v = 1.2568 fm
a_v = 0.633 fm
Surface:
W_0 = 17.2 MeV
B_s = 11.19 MeV
C_s = 0.01361 1/MeV
C_wiso = 23.5 MeV
r_s = 1.1803 fm
a_s = 0.601 fm
Spin-orbit:
V_so = 5.75 MeV
lambda_so = 0.005 1/MeV
W_so = -3.1 MeV
B_so = 160 MeV
r_so = 1.1214 fm
a_so = 0.59 fm
Coulomb:
C_coul = 1.3
r_c = 1.2452 fm
a_c = 0.545 fm
Deformation:
beta_2 = 0.213
beta_4 = 0.066
beta_6 = 0.0015
* Calculated strength function
S0= 1.44e-4 S1= 2.89e-4 R'= 9.24 fm (En=1 keV)
--------------------------------------------------
Table 2. Level Scheme of Cf-254
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.04572 2 + *
2 0.15173 4 + *
3 0.31920 6 + *
4 0.54720 8 + *
-------------------
*) Coupled levels in CC calculation
Table 3. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cf-255 19.4922 0.7515 2.7279 0.3524 -0.7149 2.7515
Cf-254 19.4263 1.5059 2.4305 0.3644 -0.0499 3.6204
Cf-253 19.3604 0.7544 2.0655 0.3368 -0.4669 2.4564
Cf-252 19.2945 1.5119 1.7395 0.3655 0.0444 3.5280
Cf-251 19.2285 0.7574 1.2773 0.3926 -0.9361 3.0632
--------------------------------------------------------
Table 4. Fission barrier parameters
----------------------------------------
Nuclide V_A hw_A V_B hw_B
MeV MeV MeV MeV
----------------------------------------
Cf-255 5.600 1.000 4.600 0.800
Cf-254 6.200 1.040 5.400 0.600
Cf-253 5.600 1.000 4.600 0.800
Cf-252 6.000 1.040 5.000 0.800
Cf-251 6.200 0.800 5.000 0.600
----------------------------------------
Table 5. Level density above inner saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cf-255 21.8312 0.8767 2.5000 0.3394 -1.8575 3.1767
Cf-254 21.7575 1.7569 2.5000 0.3191 -0.6561 3.7569
Cf-253 21.6837 0.8802 2.5000 0.3407 -1.8541 3.1802
Cf-252 21.6098 1.7638 2.5000 0.3202 -0.6492 3.7638
Cf-251 21.5360 0.8837 2.5000 0.3208 -1.5294 2.8837
--------------------------------------------------------
Table 6. Level density above outer saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cf-255 21.8312 0.8767 1.1600 0.3445 -0.8360 2.8767
Cf-254 21.7575 1.7569 1.1200 0.3455 0.0447 3.7569
Cf-253 21.6837 0.8802 1.0800 0.3466 -0.8314 2.8802
Cf-252 21.6098 1.7638 1.0400 0.3477 0.0528 3.7638
Cf-251 21.5360 0.8837 1.0000 0.3488 -0.8268 2.8837
--------------------------------------------------------
Table 7. Gamma-ray strength function for Cf-255
--------------------------------------------------------
K0 = 1.500 E0 = 4.500 (MeV)
* E1: ER = 11.37 (MeV) EG = 2.70 (MeV) SIG = 260.65 (mb)
ER = 14.17 (MeV) EG = 4.11 (MeV) SIG = 521.30 (mb)
* M1: ER = 6.47 (MeV) EG = 4.00 (MeV) SIG = 1.87 (mb)
* E2: ER = 9.93 (MeV) EG = 3.05 (MeV) SIG = 7.35 (mb)
--------------------------------------------------------
References
1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009).
2) R.J.Tuttld: INDC(NDS)-107/G+Special, p.29 (1979).
3) G.Benedetti et al.: Nucl. Sci. Eng., 80, 379 (1982).
4) R.Waldo et al.: Phys. Rev., C23, 1113 (1981).
5) R.J.Howerton: Nucl. Sci. Eng., 62, 438 (1977).
6) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
7) R.W.Lougheed et al.: J. Inorg. Nucl. Chem., 43, 2239(1981).
8) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005).
9) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973).
10) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
11) C.Kalbach: Phys. Rev. C33, 818 (1986).
12) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
13) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
14) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
15) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953).
16) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
17) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).