24-Cr- 50
24-Cr- 50 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100311
----JENDL-4.0 MATERIAL 2425
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved parameters for Reich-Moore formula were given in the
energy region below 600 keV. Evaluation was based on the
experimental data of Stieglitz+71/1/, Beer+74/2/,
Allen+77/3/, Kenny+77/4/ and Brusegan+86/5/. Effective
scattering radius =5.0 fm /6/.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.7785e+01
Elastic 2.4051e+00
n,gamma 1.5380e+01 7.2276e+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MT=108 (n,2a) cross section
Calculated with CCONE code /7/.
MT=111 (n,2p) cross section
Calculated with CCONE code /7/.
MT=112 (n,pa) cross section
Calculated with CCONE code /7/.
MT=115 (n,pd) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Cr-50
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 +
1 0.78330 2 +
2 1.88129 4 +
3 2.92450 2 +
4 3.16110 2 +
5 3.16369 6 +
6 3.32457 4 +
7 3.59455 4 +
8 3.60200 0 +
9 3.61130 4 +
10 3.62950 1 +
11 3.69200 4 +
12 3.69400 0 +
13 3.69770 2 +
14 3.79230 5 +
15 3.82540 5 +
16 3.82700 0 +
17 3.84430 4 +
18 3.85000 0 +
19 3.87490 6 +
20 3.89530 2 +
21 3.89800 4 +
22 3.93770 2 +
23 4.04000 0 +
24 4.05170 3 -
25 4.07040 2 +
26 4.12970 1 +
27 4.19290 2 +
28 4.20700 4 -
29 4.28200 1 -
30 4.35000 0 +
31 4.36300 5 -
32 4.52390 6 +
33 4.54620 3 -
34 4.65350 6 +
35 4.67600 2 +
36 4.72800 1 +
37 4.74000 0 +
38 4.74500 8 +
39 4.77200 2 +
40 4.80100 0 -
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cr- 51 7.8300 1.6803 -1.0884 1.4788 -2.9231 13.9698
Cr- 50 5.7000 3.3941 -1.2177 2.0723 -3.5586 21.5750
Cr- 49 7.7100 1.7143 -1.4166 1.3612 -1.1260 11.2425
V- 50 7.0000 0.0000 -0.6353 1.4319 -3.1193 9.4496
V- 49 6.7530 1.7143 0.1225 1.5781 -3.1344 13.3216
V- 48 6.9718 0.0000 -0.7287 0.7702 0.6769 1.0000
Ti- 49 7.8800 1.7143 0.2445 1.1040 -0.1128 7.6316
Ti- 48 7.0700 3.4641 0.6643 1.4400 -0.8454 13.4405
Ti- 47 6.4500 1.7504 0.7264 1.5575 -2.7868 12.2959
Ti- 46 6.7261 3.5386 0.5488 1.5866 -1.7385 15.2474
--------------------------------------------------------
Table 3. Gamma-ray strength function for Cr- 51
--------------------------------------------------------
* E1: ER = 17.80 (MeV) EG = 6.50 (MeV) SIG = 88.00 (mb)
* M1: ER = 11.06 (MeV) EG = 4.00 (MeV) SIG = 1.66 (mb)
* E2: ER = 16.99 (MeV) EG = 5.50 (MeV) SIG = 1.22 (mb)
--------------------------------------------------------
References
1) Stiegliz,R.G. et al.: Nucl. Phys. A163, 592 (1971).
2) Beer,H. and Spencer,R.P.: KfK-2063 (1974), also Nucl.
Phys. A240, 29 (1975).
3) Allen,B.J. and Musgrove,A.R.de L.: Neutron Data of
Structural Materials for FBR, 1977 Geel meeting, p.447,
Pergamon Press (1979).
4) Kenny,M.J. et al.: AAEC/E-400 (1977).
5) Brusegan,A. et al.: 85 Santa Fe vol.1 p.633 (1986).
6) Mughabghab,S.F. et al.: "Neutron Cross Sections", Vol.1,
Part A (1981).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).