24-Cr- 54
24-Cr- 54 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100311
----JENDL-4.0 MATERIAL 2437
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved parameters for Rech-Moore formula were given in the
energy region below 750 keV. Evaluated based on the
experimental data of Stieglitz+71/1/, Beer+74/2/,
Allen+77/3/, Kenny+77/4/ and Brusegan+86/5/.
Effective scattering radius = 5.3 fm/6/.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.9695e+00
Elastic 2.5646e+00
n,gamma 4.0486e-01 2.0416e-01
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/ (+)
(+) omp parameters were modified.
* DWBA calculation
levels: 1,2 (see Table 1)
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Cr-54
---------------------------------
No. Ex(MeV) J PI, DWBA: beta
---------------------------------
0 0.00000 0 +
1 0.83486 2 + 0.21
2 1.82393 4 + 0.05
3 2.61968 2 +
4 2.82962 0 +
5 3.07407 2 +
6 3.15957 4 +
7 3.22245 6 +
8 3.39341 2 -
9 3.43688 2 +
10 3.46800 2 -
11 3.51400 0 +
12 3.65523 4 +
13 3.72003 1 +
14 3.78571 4 +
15 3.79854 4 +
16 3.86102 2 +
17 3.87040 1 +
18 3.92555 1 +
19 3.92769 2 +
20 3.98742 1 -
21 4.01290 0 +
22 4.04330 5 +
23 4.08325 2 +
24 4.12600 2 +
25 4.12705 3 -
26 4.19080 2 +
27 4.21751 2 +
28 4.23910 2 +
29 4.25640 2 +
30 4.38095 1 -
31 4.45100 4 +
32 4.45840 1 +
33 4.57080 2 -
34 4.58300 0 +
35 4.61800 2 -
36 4.63360 2 +
37 4.68150 8 +
38 4.68700 3 -
39 4.74000 3 -
---------------------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cr- 55 8.2900 1.6181 0.4243 1.1150 -0.7353 8.3001
Cr- 54 7.6400 3.2660 -0.3078 1.3615 -0.2907 12.8510
Cr- 53 7.8100 1.6483 -1.1345 1.2832 -0.7530 9.9152
Cr- 52 6.6800 3.3282 -1.3204 1.6541 -0.9930 16.2114
V- 54 7.6771 0.0000 0.8258 1.2282 -3.0179 7.6939
V- 53 8.3000 1.6483 0.7140 1.0721 -0.5097 7.7958
V- 52 7.1000 0.0000 -0.6140 1.2996 -2.0622 7.3847
Ti- 53 8.1924 1.6483 0.9098 0.5784 2.0951 2.6483
Ti- 52 7.4405 3.3282 0.9095 1.1982 0.7905 10.2429
Ti- 51 7.6300 1.6803 -0.3127 1.1333 0.1795 7.4616
Ti- 50 7.2500 3.3941 -0.4613 1.2919 1.1007 10.9863
--------------------------------------------------------
Table 3. Gamma-ray strength function for Cr- 55
--------------------------------------------------------
* E1: ER = 17.80 (MeV) EG = 6.50 (MeV) SIG = 88.00 (mb)
* M1: ER = 10.78 (MeV) EG = 4.00 (MeV) SIG = 1.34 (mb)
* E2: ER = 16.57 (MeV) EG = 5.45 (MeV) SIG = 1.14 (mb)
--------------------------------------------------------
References
1) Stiegliz,R.G. et al.: Nucl. Phys. A163, 592 (1971).
2) Beer,H. and Spencer,R.P.: KfK-2063 (1974), also Nucl. Phys.
A240, 29 (1975).
3) Allen,B.J. and Musgrove,A.R.de L.: Neutron Data of Structural
Materials for FBR, 1977 Geel meeting, p.447, Pergamon Press
(1979).
4) Kenny,M.J. et al.: AAEC/E-400 (1977).
5) Brusegan,A. et al.: 85 Santa Fe Vol.1 p.633 (1986).
6) Mughabghab,S.F. et al.: "Neutron Cross Sections ", Vol.1,
Part A (1981).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).