55-Cs-134
55-Cs-134 JAEA+ EVAL-Apr09 N.Iwamoto,H.Matsunobu
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5528
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-04 The resolved resonance parameters were evaluated by
H.Matsunobu.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 270 eV
The resonance energies, neutron widths and radiation widths
were based on the measurements by Anufriev et al./1/.
The average radiation width of 160 meV was adopted for the
resonance levels whose radiation width was unknown. The
value of neutron orbital angular momentum l was assumed to
be 0 for all resonance levels. The values of total spin j
for all resonance levels were estimated with a random number
method. Scattering radius was taken from the graph (fig. 1,
Part A) given by Mughabghab et al./2/. A negative
resonance was added so as to reproduce the thermal capture
cross section of 140.6+-8.5 barns at 0.0253 eV measured by
Nakamura et al./3/
Unresolved resonance region : 270 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.6355e+02
Elastic 2.2917e+01
n,gamma 1.4064e+02 7.2504e+01
n,p 6.2615e-07
n,alpha 5.7485e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 29 (n,n2a) cross section
Calculated with CCONE code /6/.
MT= 30 (n,2n2a) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /6/.
MT= 34 (n,nHe3) cross section
Calculated with CCONE code /6/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /6/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /6/.
MT= 45 (n,npa) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MT=108 (n,2a) cross section
Calculated with CCONE code /6/.
MT=111 (n,2p) cross section
Calculated with CCONE code /6/.
MT=112 (n,pa) cross section
Calculated with CCONE code /6/.
MT=115 (n,pd) cross section
Calculated with CCONE code /6/.
MT=116 (n,pt) cross section
Calculated with CCONE code /6/.
MT=117 (n,da) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 29 (n,n2a) reaction
Calculated with CCONE code /6/.
MT= 30 (n,2n2a) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /6/.
MT= 34 (n,nHe3) reaction
Calculated with CCONE code /6/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /6/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /6/.
MT= 45 (n,npa) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: McFadden,L. and Satchler,G.R./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Cs-134
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 4 +
1 0.01124 5 +
2 0.06003 3 +
3 0.13874 8 -
4 0.17379 3 +
5 0.17640 4 -
6 0.17664 1 +
7 0.19026 3 +
8 0.19362 4 -
9 0.19778 2 +
10 0.20955 4 +
11 0.23433 3 +
12 0.25711 6 -
13 0.26766 4 -
14 0.27135 3 +
15 0.29097 2 +
16 0.34436 7 -
17 0.37710 4 +
18 0.38298 6 -
19 0.43417 7 -
20 0.45024 5 -
21 0.45143 3 +
22 0.45409 4 +
23 0.48366 3 -
24 0.50284 3 +
25 0.51932 4 +
26 0.53966 3 +
27 0.57083 4 -
28 0.57913 2 +
29 0.58418 3 +
30 0.61302 5 -
31 0.62200 3 +
32 0.62401 5 -
33 0.64070 8 -
34 0.64396 4 -
35 0.65330 3 -
36 0.66500 4 +
37 0.67600 5 -
38 0.68070 5 +
39 0.68450 3 -
40 0.68863 4 +
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cs-135 16.6000 1.0328 -1.8144 0.6675 -0.2856 5.6078
Cs-134 17.0000 0.0000 -0.8946 0.7066 -2.2698 5.8956
Cs-133 16.4429 1.0405 -0.1729 0.7096 -1.3562 6.9453
Cs-132 15.0210 0.0000 0.5030 0.7096 -2.0934 5.3772
Xe-134 17.1069 2.0733 -2.8193 0.7693 -0.1097 8.7590
Xe-133 18.7000 1.0405 -1.7673 0.6413 -0.6524 6.0509
Xe-132 16.8500 2.0889 -1.1507 0.6595 0.5201 6.8662
Xe-131 18.6500 1.0484 -0.1767 0.6072 -0.8373 5.8792
I-133 16.1297 1.0405 -3.5913 0.8275 -1.0073 8.1906
I-132 16.6361 0.0000 -2.4976 0.7769 -2.2437 6.6852
I-131 15.9219 1.0484 -1.6425 0.7356 -0.8231 6.6968
I-130 16.4000 0.0000 -0.6800 0.8536 -4.2325 9.0264
I-129 15.7137 1.0565 -0.1025 0.6848 -0.7998 6.1306
I-128 16.4000 0.0000 0.6379 0.7507 -3.3087 6.9967
--------------------------------------------------------
Table 3. Gamma-ray strength function for Cs-135
--------------------------------------------------------
* E1: ER = 15.25 (MeV) EG = 4.41 (MeV) SIG = 230.00 (mb)
ER = 6.20 (MeV) EG = 2.20 (MeV) SIG = 3.90 (mb)
ER = 2.10 (MeV) EG = 5.60 (MeV) SIG = 0.40 (mb)
* M1: ER = 7.99 (MeV) EG = 4.00 (MeV) SIG = 1.11 (mb)
* E2: ER = 12.28 (MeV) EG = 4.49 (MeV) SIG = 2.97 (mb)
--------------------------------------------------------
References
1) Anufriev, V.A. et al.: AE,63.(5),346 (1987).
2) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part A",
Academic Press (1981).
3) Nakamura, S. et al.: J. Nucl. Sci. Technol., 36, 635 (1999).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).