55-Cs-136
55-Cs-136 JAEA EVAL-Apr09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5534
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-04 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
No resolved resonance parameters
Unresolved resonance region : 29 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.6546e+01
Elastic 3.5133e+00
n,gamma 1.3005e+01 4.2949e+01
n,alpha 4.4146e-09
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 29 (n,n2a) cross section
Calculated with CCONE code /3/.
MT= 30 (n,2n2a) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /3/.
MT= 34 (n,nHe3) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /3/.
MT= 45 (n,npa) cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MT=108 (n,2a) cross section
Calculated with CCONE code /3/.
MT=111 (n,2p) cross section
Calculated with CCONE code /3/.
MT=112 (n,pa) cross section
Calculated with CCONE code /3/.
MT=115 (n,pd) cross section
Calculated with CCONE code /3/.
MT=116 (n,pt) cross section
Calculated with CCONE code /3/.
MT=117 (n,da) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 29 (n,n2a) reaction
Calculated with CCONE code /3/.
MT= 30 (n,2n2a) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /3/.
MT= 34 (n,nHe3) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /3/.
MT= 45 (n,npa) reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: McFadden,L. and Satchler,G.R./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Cs-136
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5 +
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Cs-137 16.8656 1.0252 -3.8037 0.6992 0.1372 5.5205
Cs-136 18.0000 0.0000 -2.9176 0.6768 -1.3925 5.0000
Cs-135 16.6000 1.0328 -1.8144 0.6675 -0.2856 5.6078
Cs-134 17.0000 0.0000 -0.8946 0.7066 -2.2698 5.8956
Xe-136 17.3240 2.0580 -4.8277 0.7973 0.5592 8.7610
Xe-135 20.2000 1.0328 -3.8043 0.5665 0.4707 4.2857
Xe-134 17.1069 2.0733 -2.8193 0.7693 -0.1097 8.7590
Xe-133 18.7000 1.0405 -1.7673 0.6413 -0.6524 6.0509
I-135 16.3372 1.0328 -5.8723 0.8855 -0.3830 9.0941
I-134 16.8488 0.0000 -4.8096 0.8747 -2.2475 8.6722
I-133 16.1297 1.0405 -3.5913 0.8275 -1.0073 8.1906
I-132 16.6361 0.0000 -2.4976 0.7769 -2.2437 6.6852
I-131 15.9219 1.0484 -1.6425 0.7356 -0.8231 6.6968
--------------------------------------------------------
Table 3. Gamma-ray strength function for Cs-137
--------------------------------------------------------
* E1: ER = 15.25 (MeV) EG = 4.41 (MeV) SIG = 230.00 (mb)
ER = 6.20 (MeV) EG = 2.20 (MeV) SIG = 3.90 (mb)
ER = 2.10 (MeV) EG = 5.60 (MeV) SIG = 0.40 (mb)
* M1: ER = 7.95 (MeV) EG = 4.00 (MeV) SIG = 1.08 (mb)
* E2: ER = 12.22 (MeV) EG = 4.47 (MeV) SIG = 2.94 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).