66-Dy-154
66-Dy-154 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6619
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
No resolved resonance parameters
Unresolved resonance region : 2.75 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.2778e+01
Elastic 6.7425e+00
n,gamma 3.6014e+01 1.4434e+03
n,alpha 7.5605e-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 29 (n,n2a) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 45 (n,npa) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MT=108 (n,2a) cross section
Calculated with CCONE code /3/.
MT=111 (n,2p) cross section
Calculated with CCONE code /3/.
MT=112 (n,pa) cross section
Calculated with CCONE code /3/.
MT=117 (n,da) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 29 (n,n2a) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 45 (n,npa) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,8 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Dy-154
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.33458 2 + *
2 0.66082 0 +
3 0.74704 4 + *
4 0.90519 2 +
5 1.02711 2 +
6 1.05808 0 +
7 1.20802 3 -
8 1.22408 6 + *
9 1.25186 4 +
10 1.33431 3 +
11 1.39030 2 +
12 1.42039 1 -
13 1.44267 4 +
14 1.50765 2 +
15 1.54600 5 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Dy-155 21.0000 0.9639 3.7427 0.5171 -1.5377 5.8001
Dy-154 18.5215 1.9340 3.0063 0.5322 0.0748 6.1596
Dy-153 19.0261 0.9701 2.7653 0.4977 -0.5414 4.6799
Dy-152 18.3157 1.9467 1.8576 0.5120 0.6531 5.4939
Tb-154 18.4033 0.0000 4.1188 0.4408 -1.0519 2.9000
Tb-153 17.6600 0.9701 3.7693 0.5787 -1.4591 5.9339
Tb-152 18.2003 0.0000 3.1792 0.3607 -0.2477 1.5759
Tb-151 17.4614 0.9765 2.6523 0.5576 -0.8159 5.2323
Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506
Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623
Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822
Gd-150 18.1096 1.9596 2.0439 0.5067 0.7184 5.4062
Gd-149 18.6229 0.9831 1.3579 0.4917 -0.0599 4.1611
Gd-148 17.9032 1.9728 0.4709 0.5188 1.0320 5.1646
--------------------------------------------------------
Table 3. Gamma-ray strength function for Dy-155
--------------------------------------------------------
* E1: ER = 12.84 (MeV) EG = 3.41 (MeV) SIG = 131.41 (mb)
ER = 15.83 (MeV) EG = 5.08 (MeV) SIG = 262.83 (mb)
ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb)
ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb)
* M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 0.88 (mb)
* E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.94 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).