66-Dy-158
66-Dy-158 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6631
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
S.Chiba.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 94.6 eV
The evaluation is based on the work of Mughabghab /1/
A scattering radius of 8.0 fm was used.
Unresolved resonance region : 94.6 eV - 200.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.0612e+01
Elastic 7.6649e+00
n,gamma 4.2947e+01 1.9472e+02
n,alpha 1.4649e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,6,22 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Dy-158
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.09892 2 + *
2 0.31714 4 + *
3 0.63771 6 + *
4 0.94632 2 +
5 0.99053 0 +
6 1.04389 8 + *
7 1.04460 3 +
8 1.08558 2 +
9 1.16375 4 +
10 1.26900 0 +
11 1.28000 4 +
12 1.31478 5 +
13 1.36200 2 +
14 1.37173 1 -
15 1.39717 3 -
16 1.44175 1 -
17 1.47700 5 +
18 1.48635 6 +
19 1.50112 4 +
20 1.51354 4 +
21 1.51845 3 -
22 1.52010 10 + *
23 1.52807 5 -
24 1.54732 6 +
25 1.55900 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Dy-159 19.1000 0.9517 3.1578 0.5560 -1.4112 5.8333
Dy-158 18.8000 1.9093 3.2464 0.5523 -0.3436 6.6448
Dy-157 21.0000 0.9577 3.6038 0.5209 -1.5561 5.8371
Dy-156 19.2000 1.9215 3.4235 0.5154 -0.0016 6.1369
Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269
Tb-157 18.0565 0.9577 3.3696 0.5538 -1.1365 5.5068
Tb-156 18.6060 0.0000 3.7106 0.4631 -1.2383 3.2202
Tb-155 17.8584 0.9639 3.7779 0.5648 -1.3347 5.7410
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609
Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075
Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506
Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623
--------------------------------------------------------
Table 3. Gamma-ray strength function for Dy-159
--------------------------------------------------------
* E1: ER = 12.37 (MeV) EG = 3.17 (MeV) SIG = 135.39 (mb)
ER = 16.05 (MeV) EG = 5.22 (MeV) SIG = 270.78 (mb)
ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb)
ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb)
* M1: ER = 7.57 (MeV) EG = 4.00 (MeV) SIG = 0.91 (mb)
* E2: ER = 11.63 (MeV) EG = 4.20 (MeV) SIG = 3.88 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron
Resonance Parameters and Thermal Cross Sections, Part B",
Academic Press (1984).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).