66-Dy-159
66-Dy-159 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6634
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
No resolved resonance parameters
Unresolved resonance region : 0.3 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.0778e+02
Elastic 7.2735e+00
n,gamma 6.0024e+02 3.1138e+03
n,p 1.5995e-12
n,alpha 3.7896e-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,5,10,15 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Dy-159
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3/2 - *
1 0.05663 5/2 - *
2 0.13644 7/2 - *
3 0.17761 5/2 +
4 0.20899 7/2 +
5 0.23585 9/2 - *
6 0.23942 9/2 +
7 0.30959 5/2 -
8 0.32810 11/2 +
9 0.35277 11/2 -
10 0.36110 11/2 - *
11 0.36531 13/2 +
12 0.39527 7/2 -
13 0.41700 3/2 +
14 0.47000 7/2 +
15 0.49760 13/2 - *
16 0.50498 9/2 -
17 0.51547 13/2 -
18 0.53300 1/2 -
19 0.54334 15/2 +
20 0.54900 3/2 +
21 0.56200 1/2 +
22 0.57567 17/2 +
23 0.58600 3/2 -
24 0.60700 7/2 +
25 0.62100 5/2 -
26 0.62700 3/2 -
27 0.63500 11/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Dy-160 21.1000 1.8974 2.8705 0.5085 -0.2487 6.3915
Dy-159 19.1000 0.9517 3.1578 0.5560 -1.4112 5.8333
Dy-158 18.8000 1.9093 3.2464 0.5523 -0.3436 6.6448
Dy-157 21.0000 0.9577 3.6038 0.5209 -1.5561 5.8371
Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234
Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269
Tb-157 18.0565 0.9577 3.3696 0.5538 -1.1365 5.5068
Tb-156 18.6060 0.0000 3.7106 0.4631 -1.2383 3.2202
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609
Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075
Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506
--------------------------------------------------------
Table 3. Gamma-ray strength function for Dy-160
--------------------------------------------------------
* E1: ER = 12.35 (MeV) EG = 3.16 (MeV) SIG = 136.37 (mb)
ER = 16.04 (MeV) EG = 5.21 (MeV) SIG = 272.74 (mb)
ER = 6.20 (MeV) EG = 4.50 (MeV) SIG = 1.10 (mb)
ER = 3.10 (MeV) EG = 1.50 (MeV) SIG = 0.50 (mb)
* M1: ER = 7.55 (MeV) EG = 4.00 (MeV) SIG = 0.95 (mb)
* E2: ER = 11.60 (MeV) EG = 4.19 (MeV) SIG = 3.87 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).