66-Dy-164
66-Dy-164 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6649
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
S.Chiba.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 8.5 keV
The evaluation is based on the work of Mughabghab /1/
A scattering radius of 7.5 fm was used.
Unresolved resonance region : 8.5 keV - 200.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.9742e+03
Elastic 3.2296e+02
n,gamma 2.6512e+03 3.4123e+02
n,alpha 2.8341e-07
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,6,15 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Dy-164
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.07339 2 + *
2 0.24223 4 + *
3 0.50132 6 + *
4 0.76182 2 +
5 0.82819 3 +
6 0.84368 8 + *
7 0.91600 4 +
8 0.97689 2 -
9 1.02464 5 +
10 1.03930 3 -
11 1.12277 4 -
12 1.15575 6 +
13 1.16600 5 +
14 1.22514 5 -
15 1.26130 10 + *
16 1.30260 7 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Dy-165 20.2000 0.9342 1.9090 0.5588 -1.3948 5.9238
Dy-164 19.6000 1.8741 2.0177 0.5619 -0.3641 6.7556
Dy-163 19.9000 0.9399 2.1664 0.5502 -1.2684 5.7265
Dy-162 19.5000 1.8856 2.4639 0.5582 -0.4126 6.7742
Tb-164 19.4138 0.0000 1.8983 0.4855 -1.2362 3.4000
Tb-163 18.6492 0.9399 2.1299 0.5457 -0.8637 5.2359
Tb-162 18.6000 0.0000 1.8944 0.4625 -0.8591 2.8270
Tb-161 18.4519 0.9457 2.4950 0.5607 -1.0970 5.5427
Gd-163 20.0270 0.9399 2.0953 0.3054 0.9417 1.9399
Gd-162 19.3418 1.8856 2.3374 0.5664 -0.4417 6.8501
Gd-161 19.6000 0.9457 2.2447 0.5241 -0.8691 5.1638
Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078
Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
--------------------------------------------------------
Table 3. Gamma-ray strength function for Dy-165
--------------------------------------------------------
* E1: ER = 12.12 (MeV) EG = 3.05 (MeV) SIG = 141.19 (mb)
ER = 16.04 (MeV) EG = 5.21 (MeV) SIG = 282.37 (mb)
ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb)
ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb)
* M1: ER = 7.48 (MeV) EG = 4.00 (MeV) SIG = 0.93 (mb)
* E2: ER = 11.49 (MeV) EG = 4.13 (MeV) SIG = 3.81 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron
Resonance Parameters and Thermal Cross Sections, Part B",
Academic Press (1984).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).