99-Es-254
99-Es-254 JAEA+ EVAL-JAN10 O.Iwamoto, T.Nakagawa, et al.
DIST-MAY10 20100304
----JENDL-4.0 MATERIAL 9914
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
07-09 Theoretical calculation was performed with CCONE code.
07-10 Theoretical calculation was performed with CCONE code.
07-11 Data were compiled as JENDL/AC-2008/1/
09-08 (MF1,MT458) was evaluated.
10-01 Data of prompt gamma rays due to fission were given.
10-03 Covariance data were given.
MF=1 General information
MT=452 Number of Neutrons per fission
Sum of MT's=455 and 456.
MT=455 Delayed neutron data
(Same as JENDL-3.3)
Estimated from systematics by Tuttle/2/, Benedetti et al./3/
and Waldo et al./4/
Decay constants were taken from Ref./5/
MT=456 Number of prompt neutrons per fission
(Same as JENDL-3.3)
Estimated from Howerton's sytematics/6/.
MT=458 Components of energy release due to fission
Total energy and prompt energy were calculated from mass
balance using JENDL-4 fission yields data and mass excess
evaluation. Mass excess values were from Audi's 2009
evaluation/7/. Delayed energy values were calculated from
the energy release for infinite irradiation using JENDL FP
Decay Data File 2000 and JENDL-4 yields data. For delayed
neutron energy, as the JENDL FP Decay Data File 2000/8/ does
not include average neutron energy values, the average values
were calculated using the formula shown in the report by
T.R. England/9/. The fractions of prompt energy were
calculated using the fractions of Sher's evaluation/10/ when
they were provided. When the fractions were not given by Sher,
averaged fractions were used.
MF= 2 Resonance parameters
MT=151
No resonance parameters are given.
Thermal cross sections and resonance integrals (at 300K)
-------------------------------------------------------
0.0253 eV reson. integ.(*)
(barns) (barns)
-------------------------------------------------------
total 2168.1
elastic 10.22
fission 2129.2 1120
capture 28.31 683
-------------------------------------------------------
(*) In the energy range from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
Below 0.5 eV:
* Elastic scattering cross section is 10.2 b calculated from
scattering radius of 9.001 fm/11/.
* Fission cross section is in the 1/v shape, and 2128 b at
0.0253 eV was estimated from experimental data/12,13,14,15/.
* Capture cross section is in the 1/v shape, and 28.3 b at
0.0253 eV/14/
Above 0.5 eV:
Cross sections were calculated with CCONE code/11/.
MT= 1 Total cross section
The cross section was calculated with CC OMP of Soukhovitskii
et al./16/
MT=18 Fission cross section
The experimental data of Danon et al./15,17/ were used to
determine the parameters in the CCONE calculation.
MF= 4 Angular distributions of secondary neutrons
MT=2 Elastic scattering
Calculated with CCONE code/11/.
MT=18 Fission
Isotropic distributions in the laboratory system were assumed.
MF= 5 Energy distributions of secondary neutrons
MT=18 Prompt netrons
Calculated with CCONE code/11/.
MT=455 Delayed neutrons
Calculated by Brady and England/5/.
MF= 6 Energy-angle distributions
Calculated with CCONE code/11/.
Distributions from fission (MT=18) are not included.
MF=12 Photon production multiplicities
MT=18 Fission
Calculated from the total energy released by the prompt
gamma-rays due to fission given in MF=1/MT=458 and the
average energy of gamma-rays.
MF=14 Photon angular distributions
MT=18 Fission
Isotoropic distributions were assumed.
MF=15 Continuous photon energy spectra
MT=18 Fission
Experimental data measured by Verbinski et al./18/ for
Pu-239 thermal fission were adopted.
MF=31 Covariances of average number of neutrons per fission
MT=452 Number of neutrons per fission
Sum of covariances for MT=455 and MT=456.
MT=455
Error of 15% was assumed.
MT=456
Covariance was obtained by fitting a linear function to the
at 0.0 and 5.0 MeV with an uncertainty of 10%.
MF=33 Covariances of neutron cross sections
Covariances were given to all the cross sections by using
KALMAN code/19/ and the covariances of model parameters
used in the cross-section calculations.
Covariances of the fission cross section were determined from
experimental data.
For the following cross sections, standard deviations in the
energy region below 0.5 eV were assumed as follows:
Total 6.7 %
Elastic scattering 50 %
Fission 6.8 % estimated from experimental data
Capture 11 % estimated from experimental data
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Covariances were given only to P1 components.
MF=35 Covariances for Energy Distributions
MT=18 Fission spectra
Estimated with CCONE and KALMAN codes.
*****************************************************************
Calculation with CCONE code
*****************************************************************
Models and parameters used in the CCONE/11/ calculation
1) Coupled channel optical model
Levels in the rotational band were included. Optical model
potential and coupled levels are shown in Table 1.
2) Two-component exciton model/20/
* Global parametrization of Koning-Duijvestijn/21/
was used.
* Gamma emission channel/22/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/23/ was included.
* Neutron, gamma and fission decay channel were included.
* Transmission coefficients of neutrons were taken from
coupled channel calculation in Table 1.
* The level scheme of the target is shown in Table 2.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 3.
* Fission channel:
Double humped fission barriers were assumed.
Fission barrier penetrabilities were calculated with
Hill-Wheler formula/24/. Fission barrier parameters were
shown in Table 4. Transition state model was used and
continuum levels are assumed above the saddles. The level
density parameters for inner and outer saddles are shown in
Tables 5 and 6, respectively.
* Gamma-ray strength function of Kopecky et al/25/,/26/
was used. The prameters are shown in Table 7.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Coupled channel calculation
--------------------------------------------------
* rigid rotor model was applied
* coupled levels = 0,1,3,7 (see Table 2)
* optical potential parameters /16/
Volume:
V_0 = 49.97 MeV
lambda_HF = 0.01004 1/MeV
C_viso = 15.9 MeV
A_v = 12.04 MeV
B_v = 81.36 MeV
E_a = 385 MeV
r_v = 1.2568 fm
a_v = 0.633 fm
Surface:
W_0 = 17.2 MeV
B_s = 11.19 MeV
C_s = 0.01361 1/MeV
C_wiso = 23.5 MeV
r_s = 1.1803 fm
a_s = 0.601 fm
Spin-orbit:
V_so = 5.75 MeV
lambda_so = 0.005 1/MeV
W_so = -3.1 MeV
B_so = 160 MeV
r_so = 1.1214 fm
a_so = 0.59 fm
Coulomb:
C_coul = 1.3
r_c = 1.2452 fm
a_c = 0.545 fm
Deformation:
beta_2 = 0.213
beta_4 = 0.066
beta_6 = 0.0015
* Calculated strength function
S0= 1.54e-4 S1= 3.21e-4 R'= 9.00 fm (En=1 keV)
--------------------------------------------------
Table 2. Level Scheme of Es-254
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 7 + *
1 0.08010 8 + *
2 0.08420 2 +
3 0.11420 3 + *
4 0.15420 4 +
5 0.17110 9 +
6 0.20420 5 +
7 0.21470 5 - *
-------------------
*) Coupled levels in CC calculation
Table 3. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Es-255 19.4922 0.7515 2.2159 0.3615 -0.7550 2.8069
Es-254 19.4263 0.0000 1.6001 0.2773 -0.6899 1.0000
Es-253 19.3604 0.7544 1.3654 0.3757 -0.7841 2.8632
Es-252 19.2945 0.0000 0.8872 0.2854 -0.6910 1.0000
Es-251 19.2285 0.7574 0.6125 0.4218 -1.1719 3.3703
--------------------------------------------------------
Table 4. Fission barrier parameters
----------------------------------------
Nuclide V_A hw_A V_B hw_B
MeV MeV MeV MeV
----------------------------------------
Es-255 6.120 0.800 4.800 0.520
Es-254 6.200 0.650 5.800 0.450
Es-253 6.200 0.800 5.400 0.520
Es-252 6.200 0.650 5.800 0.450
Es-251 6.200 0.800 5.400 0.520
----------------------------------------
Table 5. Level density above inner saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Es-255 21.8312 0.8767 2.4000 0.3193 -1.5382 2.8767
Es-254 21.7575 0.0000 2.4000 0.3199 -2.4149 2.0000
Es-253 21.6837 0.8802 2.4000 0.3205 -1.5348 2.8802
Es-252 21.6098 0.0000 2.4000 0.3211 -2.4150 2.0000
Es-251 21.5360 0.8837 2.4000 0.3217 -1.5314 2.8837
--------------------------------------------------------
Table 6. Level density above outer saddle
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Es-255 21.8312 0.8767 1.1200 0.3449 -0.8359 2.8767
Es-254 21.7575 0.0000 1.0800 0.3459 -1.7120 2.0000
Es-253 21.6837 0.8802 1.0400 0.3470 -0.8313 2.8802
Es-252 21.6098 0.0000 1.0000 0.3481 -1.7109 2.0000
Es-251 21.5360 0.8837 0.9600 0.3492 -0.8267 2.8837
--------------------------------------------------------
Table 7. Gamma-ray strength function for Es-255
--------------------------------------------------------
K0 = 1.500 E0 = 4.500 (MeV)
* E1: ER = 11.38 (MeV) EG = 2.71 (MeV) SIG = 261.63 (mb)
ER = 14.16 (MeV) EG = 4.11 (MeV) SIG = 523.27 (mb)
* M1: ER = 6.47 (MeV) EG = 4.00 (MeV) SIG = 1.87 (mb)
* E2: ER = 9.93 (MeV) EG = 3.05 (MeV) SIG = 7.50 (mb)
--------------------------------------------------------
References
1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009).
2) R.J.Tuttld: INDC(NDS)-107/G+Special, p.29 (1979).
3) G.Benedetti et al.: Nucl. Sci. Eng., 80, 379 (1982).
4) R.Waldo et al.: Phys. Rev., C23, 1113 (1981).
5) M.C.Brady, T.R.England: Nucl. Sci. Eng., 103, 129 (1989).
6) R.J.Howerton: Nucl. Sci. Eng., 62, 438 (1977).
7) G.Audi: Private communication (April 2009).
8) J.Katakura et al.: JAERI 1343 (2001).
9) T.R.England et al.: LA-11151-MS (1988).
10) R.Sher, C.Beck: EPRI NP-1771 (1981).
11) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
12) H.Diamond et al.: J. Inorg. Nucl. Chem., 30, 2553 (1968).
13) K.W.MacMurdo, R.M.Harbour : J. Inorg. Nucl. Chem., 34,
449 (1972).
14) J.Halperin et al.: Nucl. Sci. Eng., 90, 298 (1985).
15) Y.Danon et al.: Nucl. Sci. Eng., 109, 341 (1991).
16) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005).
17) Y.Danon et al.: 1994 Gatlinburg, Vol.1, p.245 (1994).
18) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973).
19) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
20) C.Kalbach: Phys. Rev. C33, 818 (1986).
21) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
22) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
23) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
24) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953).
25) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
26) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).