63-Eu-151
63-Eu-151 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6325
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : Below 0.0982 keV
For JENDL-2, resonance parameters were evaluated by Kikuchi
et al./1/ The parameters were adopted mainly from the
data measured by Rahn et al./2/ for the lowest 2 levels,
the data of Tassan et al./3/ were adopted. The average
radiation width of 0.093 eV/2/ was assumed for the levels
whose radiation width was not measured. A negative
resonance was added at -0.00361 eV so as to reproduce the
capture cross section of 9200+-100 barns at 0.0253 eV/4/.
For JENDL-3, total spin J of some levels was estimated
with a random number method.
Unresolved resonance region : 98.2 eV - 150 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 9.1717e+03
Elastic 3.2023e+00
n,gamma 9.1685e+03 3.1429e+03
n,alpha 8.7714e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /7/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /7/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,10,19,36 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Eu-151
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 + *
1 0.02154 7/2 + *
2 0.19625 11/2 -
3 0.19654 3/2 +
4 0.21672 7/2 +
5 0.24329 7/2 -
6 0.26047 5/2 +
7 0.30627 5/2 +
8 0.30727 5/2 +
9 0.30753 7/2 +
10 0.30786 9/2 + *
11 0.33218 3/2 +
12 0.33622 5/2 +
13 0.34985 9/2 -
14 0.35365 7/2 -
15 0.41579 7/2 +
16 0.49970 7/2 +
17 0.50227 15/2 -
18 0.50342 9/2 +
19 0.51113 11/2 + *
20 0.52219 3/2 -
21 0.52284 3/2 +
22 0.54633 5/2 +
23 0.58001 3/2 -
24 0.58706 7/2 +
25 0.60048 7/2 -
26 0.60074 5/2 -
27 0.61142 13/2 -
28 0.63270 3/2 +
29 0.65440 5/2 +
30 0.69731 5/2 +
31 0.69818 11/2 -
32 0.71488 9/2 +
33 0.71500 1/2 +
34 0.71918 1/2 +
35 0.73501 1/2 +
36 0.75238 13/2 + *
37 0.75774 1/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279
Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887
Eu-149 17.2625 0.9831 2.5338 0.5772 -0.9591 5.4887
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
--------------------------------------------------------
Table 3. Gamma-ray strength function for Eu-152
--------------------------------------------------------
K0 = 2.300 E0 = 4.500 (MeV)
* E1: ER = 12.84 (MeV) EG = 3.41 (MeV) SIG = 126.81 (mb)
ER = 15.95 (MeV) EG = 5.15 (MeV) SIG = 253.62 (mb)
* M1: ER = 7.68 (MeV) EG = 4.00 (MeV) SIG = 1.41 (mb)
* E2: ER = 11.80 (MeV) EG = 4.29 (MeV) SIG = 3.63 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-M 86-030 (1986).
2) Rahn,F., et al.: Phys. Rev., C6, 251 (1972).
3) Tassan,S., et al.: Nucl. Sci., Eng., 10, 169 (1961).
4) Mughabghab,S.F., Garber, D.I.: "Neutron Cross Sections,
Vol.1, Rresonance Parameters", BNL 325, 3rd ed., Vol. 1,
(1973).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).