63-Eu-152
63-Eu-152 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6328
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 6.55 EV.
RESONANCE PARAMETERS WERE TAKEN FROM JENDL-2 WHICH WAS
EVALUATED BY KIKUCHI ET AL./1/ AS FOLLOWS:
PARAMETERS WERE ADOPTED FROM THE DATA MEASURED BY
VERTEBNY ET AL./2/ A NEGATIVE RESONANCE WAS ADDED SO AS
TO REPRODUCE THE THERMAL CAPTURE CROSS SECTION GIVEN BY
MUGHABGHAB/3/.
FOR JENDL-3, TOTAL SPIN J WAS TENTATIVELY ESTIMATED WITH
A RANDOM NUMBER METHOD.
Unresolved resonance region : 6.55 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.2781e+04
Elastic 2.9087e+01
n,gamma 1.2751e+04 2.5375e+03
n,p 5.3614e-03
n,alpha 5.2841e-02
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /6/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /6/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,5,29 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: McFadden,L. and Satchler,G.R./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Eu-152
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3 - *
1 0.04560 0 -
2 0.06530 1 -
3 0.07726 3 -
4 0.07823 1 +
5 0.08961 4 - *
6 0.08985 4 +
7 0.10812 5 +
8 0.10909 1 -
9 0.11145 2 -
10 0.11397 3 +
11 0.11817 2 -
12 0.12084 2 +
13 0.12454 4 +
14 0.14183 4 -
15 0.14609 3 +
16 0.14786 8 -
17 0.14874 4 +
18 0.14876 6 +
19 0.15069 4 -
20 0.15806 1 +
21 0.16088 3 +
22 0.17494 3 -
23 0.17769 2 +
24 0.17893 3 +
25 0.18063 5 -
26 0.19250 7 +
27 0.19691 3 +
28 0.19967 5 +
29 0.20075 5 - *
30 0.20113 3 +
31 0.20311 1 -
32 0.20318 4 -
33 0.21161 6 +
34 0.21436 2 -
35 0.21443 4 +
36 0.21946 7 -
37 0.22080 3 -
38 0.22121 3 +
39 0.22145 2 -
40 0.22450 3 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279
Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
--------------------------------------------------------
Table 3. Gamma-ray strength function for Eu-153
--------------------------------------------------------
K0 = 2.300 E0 = 4.500 (MeV)
* E1: ER = 12.62 (MeV) EG = 3.30 (MeV) SIG = 127.77 (mb)
ER = 16.09 (MeV) EG = 5.24 (MeV) SIG = 255.53 (mb)
* M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.43 (mb)
* E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.61 (mb)
--------------------------------------------------------
References
1) KIKUCHI, Y. ET AL.: JAERI-M 86-030 (1986).
2) VERTEBNY, V.P., ET AL.: SOV. J. NUCL. PHYS., 26, 601 (1977).
3) MUGHABGHAB, S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B",
ACADEMIC PRESS (1984).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).