63-Eu-153
63-Eu-153 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6331
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : Below 97.2 eV
Evaluation was made by Kikuchi /1/. Neutron widths were
obtained by averaging the data of Rahn et al./2/ and
Anufriev et al./3/. Radiative capture widths were
adopted from the data measured by Rahn et al. The
parameters of 1.73-, 2.46-, 3.29- and 3.94-eV levels were
taken from Mughabghab /4/ so as to reproduce the capture
resonance integral of 1420 +- 100 barns recommended in
ref./5/. A negative resonance was added at -1.24 eV so as
to reproduce the capture cross section of 312 +- 7 barns
and the elastic scattering of 9.7 +- 0.7 barns at 0.0253
eV /5/.
Unresolved resonance region : 97.2 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /6/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /7/ and CCONE /8/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 3.2306e+02
Elastic 1.0363e+01
n,gamma 3.1269e+02 1.4126e+03
n,alpha 7.1342e-07
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /8/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /8/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /8/.
MT= 22 (n,na) cross section
Calculated with CCONE code /8/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /8/.
MT= 28 (n,np) cross section
Calculated with CCONE code /8/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /8/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /8/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /8/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /8/.
MT=102 Capture cross section
Calculated with CCONE code /8/.
MT=103 (n,p) cross section
Calculated with CCONE code /8/.
MT=104 (n,d) cross section
Calculated with CCONE code /8/.
MT=105 (n,t) cross section
Calculated with CCONE code /8/.
MT=106 (n,He3) cross section
Calculated with CCONE code /8/.
MT=107 (n,a) cross section
Calculated with CCONE code /8/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /8/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /8/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /8/.
MT= 22 (n,na) reaction
Calculated with CCONE code /8/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /8/.
MT= 28 (n,np) reaction
Calculated with CCONE code /8/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /8/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /8/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /8/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /8/.
MT=102 Capture reaction
Calculated with CCONE code /8/.
*****************************************************************
Nuclear Model Calculation with CCONE code /8/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,6,10,16,27 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: McFadden,L. and Satchler,G.R./13/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Eu-153
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 + *
1 0.08337 7/2 + *
2 0.09743 5/2 -
3 0.10318 3/2 +
4 0.15162 7/2 -
5 0.17285 5/2 +
6 0.19306 9/2 + *
7 0.23528 9/2 -
8 0.26974 7/2 +
9 0.32186 11/2 -
10 0.32507 11/2 + *
11 0.39640 9/2 +
12 0.40329 9/2 -
13 0.44262 5/2 +
14 0.44814 7/2 +
15 0.47793 13/2 -
16 0.48105 13/2 + *
17 0.53794 11/2 +
18 0.55247 11/2 +
19 0.55974 11/2 -
20 0.56931 7/2 +
21 0.58502 9/2 -
22 0.58934 15/2 -
23 0.61718 5/2 +
24 0.63462 1/2 +
25 0.63652 3/2 -
26 0.64159 5/2 +
27 0.65470 15/2 + *
28 0.65768 5/2 +
29 0.68190 5/2 -
30 0.69419 5/2 +
31 0.70139 7/2 +
32 0.70663 5/2 +
33 0.71110 9/2 +
34 0.71311 3/2 +
35 0.71617 13/2 +
36 0.71869 3/2 +
37 0.73252 7/2 +
38 0.73600 5/2 -
39 0.76039 3/2 -
40 0.76380 7/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
--------------------------------------------------------
Table 3. Gamma-ray strength function for Eu-154
--------------------------------------------------------
K0 = 2.300 E0 = 4.500 (MeV)
* E1: ER = 12.53 (MeV) EG = 3.25 (MeV) SIG = 128.72 (mb)
ER = 16.12 (MeV) EG = 5.26 (MeV) SIG = 257.44 (mb)
* M1: ER = 7.65 (MeV) EG = 4.00 (MeV) SIG = 1.44 (mb)
* E2: ER = 11.75 (MeV) EG = 4.26 (MeV) SIG = 3.60 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-M 86-030 (1986).
2) Rahn,F. et al.: Phys. Rev., C6, 251 (1972).
3) Anufriev,V.A., et al.: Sov. At. Energy, 46, 182 (1979).
4) Mughabghab,S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
5) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).