63-Eu-154
63-Eu-154 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6334
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.0262 keV
Resonance parameters in JENDL-2 were replaced with the
recommendation by Mughabghab/1/. Total spin J was
tentatively estimated with a random number method.
For JENDL-4.0 the resonance parameters of the first three
resonance levels were replaced with those by Mughabghab /2/.
Their neutron widths were modified within their errors,
considering the result of a benchmark test. No negative
resonance was assumed.
Unresolved resonance region : 26.2 eV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.3585e+03
Elastic 5.6654e+00
n,gamma 1.3528e+03 1.3541e+03
n,p 5.3116e-09
n,alpha 2.9353e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /5/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /5/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /5/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /5/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,19 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: McFadden,L. and Satchler,G.R./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Eu-154
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3 - *
1 0.06817 2 +
2 0.07191 1 +
3 0.08066 4 - *
4 0.08168 1 -
5 0.08282 1 -
6 0.09995 3 +
7 0.10039 1 -
8 0.10086 4 +
9 0.12256 2 -
10 0.12743 4 +
11 0.12968 4 -
12 0.13478 1 +
13 0.13670 5 +
14 0.14530 8 -
15 0.15360 6 -
16 0.16243 1 -
17 0.17360 3 -
18 0.17548 5 -
19 0.18074 5 - *
20 0.18081 2 -
21 0.18505 2 +
22 0.19229 5 +
23 0.19612 6 +
24 0.20382 3 +
25 0.21407 3 -
26 0.21948 2 -
27 0.22979 5 -
28 0.23088 4 -
29 0.23528 4 -
30 0.23929 3 -
31 0.24942 2 +
32 0.25183 3 +
33 0.25521 5 +
34 0.25819 6 +
35 0.27285 5 -
36 0.27670 7 +
37 0.27855 2 +
38 0.27904 0 -
39 0.27938 4 -
40 0.28168 3 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693
Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
--------------------------------------------------------
Table 3. Gamma-ray strength function for Eu-155
--------------------------------------------------------
K0 = 2.300 E0 = 4.500 (MeV)
* E1: ER = 12.45 (MeV) EG = 3.21 (MeV) SIG = 129.67 (mb)
ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 259.34 (mb)
* M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 1.45 (mb)
* E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.59 (mb)
--------------------------------------------------------
References
1) MUGHABGHAB, S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B",
ACADEMIC PRESS (1984).
2) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).