63-Eu-157
63-Eu-157 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6343
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
No resolved resonance parameters
Unresolved resonance region : 4.0 eV - 170 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.0615e+03
Elastic 9.0296e+00
n,gamma 4.0516e+03 1.9250e+03
n,alpha 3.9811e-12
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,5 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: McFadden,L. and Satchler,G.R./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Eu-157
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 + *
1 0.07671 7/2 + *
2 0.17700 9/2 + *
3 0.19786 5/2 -
4 0.26323 7/2 -
5 0.29600 11/2 + *
6 0.35000 9/2 -
7 0.39433 3/2 +
8 0.45350 5/2 +
9 0.45700 11/2 -
10 0.53900 7/2 +
11 0.58400 13/2 -
12 0.64500 9/2 +
13 0.67042 5/2 +
14 0.71631 5/2 +
15 0.72400 15/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000
Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155
Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Sm-157 19.4276 0.9577 2.5335 0.5242 -0.9010 5.1968
Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Pm-156 18.6060 0.0000 2.3185 0.3189 0.0173 1.0000
Pm-155 17.8584 0.9639 2.7732 0.5535 -0.9127 5.3040
Pm-154 18.4033 0.0000 2.5027 0.3188 0.0149 1.0000
Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693
Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
--------------------------------------------------------
Table 3. Gamma-ray strength function for Eu-158
--------------------------------------------------------
K0 = 2.300 E0 = 4.500 (MeV)
* E1: ER = 12.33 (MeV) EG = 3.15 (MeV) SIG = 132.48 (mb)
ER = 16.12 (MeV) EG = 5.26 (MeV) SIG = 264.96 (mb)
* M1: ER = 7.58 (MeV) EG = 4.00 (MeV) SIG = 1.46 (mb)
* E2: ER = 11.65 (MeV) EG = 4.21 (MeV) SIG = 3.55 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).