26-Fe- 54

 26-FE- 54 JNDC       EVAL-MAR87 S.IIJIMA,H.YAMAKOSHI             
                      DIST-MAR02 REV3-APR00            20010823   
----JENDL-3.3         MATERIAL 2625                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
HISTORY                                                           
 87-03  Evaluation was performed for JENDL-3.                     
 87-05  Compiled by K.Shibata (jaeri).                            
 93-11  JENDL-3.2                                                 
        The cross sections for mt=54,55 were modified by          
        K. Shibata (jaeri).                                       
        The Q-value of mt=102 was corrected.                      
        Angular distributions for mt=16,22,28,91 were obtained    
        from the JENDL Fusion File /1/ (kalbach's systematics).   
        The gamma production data were reevaluated by S. Igarasi  
        (nedac).                                                  
        Data were compiled by K. Shibata.                         
        ***** modified parts for JENDL-3.2 *******************    
        (3,54),(3,55)         Direct components                   
        (3,102)               Q-value corrected                   
        (3,4)                 Recalculated                        
        (3,2)                 Total - nonelastic                  
        (4,16),(4,22),(4,28),(4,91)                               
                              Converted from JENDL fusion file    
        (12,28),(12,102),(12,103)                                 
                              Multiplicities corrected            
        (15,102)              Newly calculated below 10 keV       
        *******************************************************   
                                                                  
 2000-04  Re-evaluated and compiled by K.Shibata (jaeri).         
        ********* modified parts for JENDL-3.3 *****************  
         (1,451)              Modified                            
         (2,151)              Taken from ENDF/B-VI.6              
         (3,1)                Re-evaluaed                         
         (3,2)                Re-calculated                       
         (3,102)              Pre-equilibrium capture included    
         (3,103)              Taken from JENDL/D-99 /2/           
         (3,251)              Deleted                             
         (4,2)                Transformation matrix deleted       
         (4,16),(4,22),(4,28),(4,91)    Deleted                   
         (5,16),(5,22),(5,28),(5,91)    Deleted                   
         (6,16),(6,22),(6,28),(6,91)    Taken from JENDL/F-99/1/  
        ********************************************************  
                                                                  
 mf=1  General information                                        
   mt=451  Descriptive data and dictionary                        
                                                                  
 mf=2  Resonance parameters                                       
   mt=151 Resolved resonances                                     
       Resonance region = 1.0e-5 eV to 700.0 keV                  
       The Reich-Moore formula was used.  Parameters were taken   
       from ENDF/B-VI.6.                                          
                                                                  
       calculated 2200-m/s cross sections and res. integrals.     
                       2200-m/s     res. integ.                   
          elastic       2.181 b        -                          
          capture       2.251 b        1.212 b                    
          total         4.432 b         -                         
                                                                  
 mf=3  Neutron cross sections                                     
       Below 700 keV, background cross sections were given for the
       total and capture cross sections.                          
       Above 700 keV, the cross sections were evaluated as        
       follows.                                                   
   mt=1    Total                                                  
       Between 700 keV and 7 MeV, the cross sections were obtained
       from the data on Fe-54 measured by Cornelis et al. /3/     
       Above 7 MeV, the cross sections were evaluated by          
       a least-squares fitting to the measurements by Cornelis    
       et al./3/ and Carlton et al. /4/                           
   mt=2    Elastic scattering                                     
       Given as total minus other cross sections                  
   mt=16,22,28 (n,2n),(n,n'a),(n,n'p)                             
       Calculated using the gnash code /5/.                       
   mt=4,51-69,91  Inelastic scattering                            
       Below 7 MeV, the cross sections were calculated using      
       casthy /6/ with width fluctuation corrections.             
       Above 7 MeV, the gnash calculation was performed.          
       For mt=51,52,53,55,59,68, the direct process               
       component was considered by the c.c. theory.               
                                                                  
       Level scheme is given as follows:                          
                                                                  
          no.     energy(MeV)  spin-parity                        
          g.s.      0.0          0 +                              
           1.       1.4082       2 +                              
           2.       2.5382       4 +                              
           3.       2.5613       0 +                              
           4.       2.9499       6 +                              
           5.       2.9590       2 +                              
           6.       3.1661       2 +                              
           7.       3.2952       4 +                              
           8.       3.3450       3 -                              
           9.       3.8338       4 +                              
          10.       4.0330       4 +                              
          11.       4.0472       4 +                              
          12.       4.0720       3 +                              
          13.       4.2632       4 +                              
          14.       4.2961       0 +                              
          15.       4.5980       2 +                              
          16.       4.6550       2 +                              
          17.       4.7000       3 +                              
          18.       4.7800       3 -                              
          19.       4.9490       4 +                              
       Continuum levels were assumed above 5.145 MeV.             
                                                                  
       Optical potential parameters are as follows:               
            V  = 46.0-0.250*E         , r0=1.286, a0=0.620        
            Ws = 14.00-0.200*E        , rs=1.390, as=0.700        
            Vso= 6.00                 , rso=1.070,aso=0.620       
                  (energies in MeV, lengths in fm)                
                                                                  
   mt=102  Capture                                                
        Casthy calculation was adopted.                           
        Above 5 MeV, the pre-equilbrium capture process was       
        considered /7/.                                           
   mt=103  (n,p)                                                  
        The cross sections were obtained from a lease-squares fit 
        to the experimental data/8/-/34/ by using the GMA         
        code /35/.                                                
   mt=107  (n,alpha)                                              
       Gnash calculation multiplied by 0.94.                      
                                                                  
 mf=4  Angular distributions of secondary neutrons                
   mt=2,51-69                                                     
       Optical and statistical-model calculation.                 
       For mt=51,52,53,54,59,68, the direct-process component     
       was taken into account by the c.c. theory.                 
                                                                  
 mf=6  Energy-angle distributions of secondary particles          
   mt=16,22,28,91                                                 
       Calculated with gnash.                                     
                                                                  
 mf=12 Photon multiplicities and transition probability arrays    
   mt=16,22,28,91,102,103,107                                     
       Multiplicities were calculated with gnash.                 
       For mt=28,102,103, corrections were made.                  
   mt=51-69                                                       
       Transition probability arrays                              
                                                                  
 mf=14 Photon angular distributions                               
   mt=16,22,28,51-69,91,102,103,107                               
       Assumed to be isotropic.                                   
                                                                  
 mf=15 Photon energy distributions                                
   mt=16,22,28,91,102,103,107                                     
       Calculated with gnash.                                     
   For mt=102, replaced with new calculations below 10 keV.       
                                                                  
References                                                        
 1) Chiba S. et al.: JAERI-M 92-027, p.35 (1992).                 
 2) JAERI Nuclear Data Center: "JENDL Dosimetry File 99",         
    private communication (1999).                                 
 3) Cornelis E. et al.: Proc. Int. Conf. Nuclear Data for         
    Science and Technology, Antwerp 1982, p.135 (1983).           
 4) Carlton R.F. et al.: Bull. Am. Phys. Soc., 30, 1252 (1985).   
 5) Young P.G. and Arthur E.D.: LA-6974 (1977).                   
 6) Igarasi S. : J. Nucl. Sci. Technol., 12, 67 (1975).           
 7) Shibata K.: Private communication (2000).                     
 8) Smith D.L. and Meadows J.W.: Nucl. Sci. Eng., 58, 314 (1975). 
 9) Cross W.G. et al.: EANDC(CAN)-16,1 (1963).                    
10) Carroll E.E., Jr. and Smith G.G.: Nucl. Sci. Eng., 22, 411    
    (1965).                                                       
11) Salisbury S.R. and Chalmers R.A. : Phys. Rev., B140, 305      
    (1965).                                                       
12) Venugopala Rao P. and Fink R.W.: Phys. Rev.,154, 1023 (1967). 
13) Saraf S.K. et al.: Nucl. Sci. Eng., 107, 365 (1991).          
14) Greenwood L.R.: ASTM-STP-956, 743 (1987).                     
15) Lauber A. and Malmskog S.G. : Nucl. Phys., 73, 234 (1965).    
16) Paulsen A. and Widera R.: Proc. Conf. Chemical Nuclear Data,  
    Measurements and Application, Canterbury, 1971.               
17) Paulsen A. et al.: Nucl. Sci. Eng., 72, 113 (1979).           
18) Bahal B.M. and Pepelnik R.: NEANDC(E)-252/U, p.28, (1984).    
19) Bahal B.M. et al.: Proc. Int. Conf. Nuclear Data for Basic    
    and Applied Science, Santa Fe 1985, p.211 (1986).             
20) Ikeda Y. et al.: JAERI-1312 (1988).                           
21) Ikeda Y. et al.: NEANDC(J)-155, p.11 (1990).                  
22) Kobayashi K. and Kimura I.: Proc. Int. Conf. Nuclear Data     
    for Science and Technology, Mito 1988, p.261 (1988).          
23) Ai C.E. et al. : Nucl. Sci., Taiwan, 14, 1 (1977).            
24) Garlea I. et al.: Revue Roumaine de Physique, 26, 643         
    (1981).                                                       
25) Viennot M. et al.: Proc. Int. Conf. Nuclear Data for          
    Science and Technology, Antwerp 1982, p.406 (1983).           
26) Lu Han-lin et al.: Chinese Nucl. Phys. 4, 272 (1982).         
27) Lu Han-lin et al.: INDC(CPR)-16 (1989); Chinese Nucl.         
    Phys. 7, 242 (1985).                                          
28) Garlea I. et al.: ZFK-562, p.126 (1985); Revue Roumaine de    
      Physique, 31, 149 (1986).                                   
29) Viennot M. et al.: Nucl. Sci. Eng., 108, 289 (1991).          
30) Garlea I. et al.: Revue Roumaine de Physique, 37, 19          
    (1992).                                                       
31) Klochkova L.I. et al: Proc. 1st Int. Conf. Neutron Physics,   
    Kiev 1987, Vol.3, p.315 (1987).                               
32) Klochkova L.I. et al.: Proc. All Union Conf. Neutron          
     Physics, Kiev 1983, Vol.4, p.381 (1983).                     
33) Meadows J.W. et al.: Ann. Nucl. Energy, 23, 877 (1996).       
34) Mannhart W.: INDC(GER)-40 (1996); private communication       
    (1998).                                                       
35) Poenitz W.P.: Proc. Conf. Nuclear Data Evaluation Methods     
    and Procedures, BNL 1980, BNL-NCS-51363, p.249 (1981).