64-Gd-152
64-Gd-152 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6425
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.66 keV
Resonance parameters below 10 eV were evaluated on the
basis of Mughabghab/1/. Above 12 eV, parameters were
adopted from Macklin/2/. For the resonances only whose
capture area was measured, neutron widths were determined
from the capture area and an average radiation width of
0.0586 eV/2/. The total spin J and orbital angular
momentum L were assigned by considering the magnitude
of the capture area of each resonance. A negative resonance
was added so as to reproduce the thermal capture cross
section of 735+-20 barns and the capture resonance integral
of 2020+-160 barns/1/. Scattering radius of 8.2 fm was
estimated from an optical model calculation shown in fig. 2
of ref./1/
In JENDL-4, the data for 12.46 - 184 eV were replaced with
the ones obtained by Anufriev et al./3/ The 207.7-eV
resonance was removed, since it was not observed by
Leinweber et al./4/ The energy of the negative resonance
was adjusted so as to reproduce the thermal capture cross
section recommended by Mughabghab./5/
Unresolved resonance region : 2.66 keV - 300.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /6/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /7/ and CCONE /8/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 7.4555e+02
Elastic 1.0452e+01
n,gamma 7.3509e+02 9.3512e+02
n,alpha 7.0393e-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /8/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /8/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /8/.
MT= 22 (n,na) cross section
Calculated with CCONE code /8/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /8/.
MT= 25 (n,3na) cross section
Calculated with CCONE code /8/.
MT= 28 (n,np) cross section
Calculated with CCONE code /8/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /8/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /8/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /8/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /8/.
MT=102 Capture cross section
Calculated with CCONE code /8/.
MT=103 (n,p) cross section
Calculated with CCONE code /8/.
MT=104 (n,d) cross section
Calculated with CCONE code /8/.
MT=105 (n,t) cross section
Calculated with CCONE code /8/.
MT=106 (n,He3) cross section
Calculated with CCONE code /8/.
MT=107 (n,a) cross section
Calculated with CCONE code /8/.
MT=108 (n,2a) cross section
Calculated with CCONE code /8/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /8/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /8/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /8/.
MT= 22 (n,na) reaction
Calculated with CCONE code /8/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /8/.
MT= 25 (n,3na) reaction
Calculated with CCONE code /8/.
MT= 28 (n,np) reaction
Calculated with CCONE code /8/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /8/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /8/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /8/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /8/.
MT=102 Capture reaction
Calculated with CCONE code /8/.
*****************************************************************
Nuclear Model Calculation with CCONE code /8/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,8,20 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: Huizenga,J.R. and Igo,G./13/
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-152
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.34428 2 + *
2 0.61540 0 +
3 0.75540 4 + *
4 0.93054 2 +
5 1.04785 0 +
6 1.10917 2 +
7 1.12319 3 -
8 1.22738 6 + *
9 1.28226 4 +
10 1.31465 1 -
11 1.31842 2 +
12 1.43402 3 +
13 1.46053 1 +
14 1.47048 5 -
15 1.55021 4 +
16 1.60560 2 +
17 1.64341 2 -
18 1.66807 6 +
19 1.69241 3 +
20 1.74678 8 + *
21 1.75598 1 -
22 1.77157 3 -
23 1.80766 5 -
24 1.83962 2 +
25 1.86158 5 +
26 1.86205 2 +
27 1.88030 7 -
28 1.91542 3 -
29 1.94116 2 +
30 1.96200 0 -
31 1.97567 2 +
32 1.99789 6 +
33 2.01163 3 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506
Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623
Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822
Gd-150 18.1096 1.9596 2.0439 0.5067 0.7184 5.4062
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279
Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887
Eu-149 17.2625 0.9831 2.5338 0.5772 -0.9591 5.4887
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131
Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-153
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb)
ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb)
* M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.86 (mb)
* E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.73 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
2) Macklin, R.L.: Nucl. Sci. Eng. 95, 304 (1987).
3) Anufriev, V.A. et al.: 87 Kiev, 2, 225 (1987).
4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
5) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier
(2006).
6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).