64-Gd-155
64-Gd-155 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6434
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.1818 keV
For JENDL-2, parameters of 3 levels below 2.6 ev were taken
from the data of Moller et al./1/ The data above 3.6 eV
were based on the measured data by Friesenhahn et al./2/
and by Ribon/3/. The average radiation width of 0.12865
eV was assumed. Scattering radius of 6.7 fm was adopted
from bnl 325(3rd.)/4/.
For JENDL-3, total spin J of J-unknown levels was estimated
with a random number method.
In JENDL-4, the data for 0.02515 - 180.3 eV were replaced
with the ones obtained by Leinweber et al./5/ The energy
of the 1st level was slightly adjusted.
Unresolved resonance region : 181.8 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /6/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /7/ and CCONE /8/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.0795e+04
Elastic 5.9487e+01
n,gamma 6.0735e+04 1.5608e+03
n,alpha 8.1543e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /8/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /8/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /8/.
MT= 22 (n,na) cross section
Calculated with CCONE code /8/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /8/.
MT= 28 (n,np) cross section
Calculated with CCONE code /8/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /8/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /8/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /8/.
MT=102 Capture cross section
Calculated with CCONE code /8/.
MT=103 (n,p) cross section
Calculated with CCONE code /8/.
MT=104 (n,d) cross section
Calculated with CCONE code /8/.
MT=105 (n,t) cross section
Calculated with CCONE code /8/.
MT=106 (n,He3) cross section
Calculated with CCONE code /8/.
MT=107 (n,a) cross section
Calculated with CCONE code /8/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /8/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /8/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /8/.
MT= 22 (n,na) reaction
Calculated with CCONE code /8/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /8/.
MT= 28 (n,np) reaction
Calculated with CCONE code /8/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /8/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /8/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /8/.
MT=102 Capture reaction
Calculated with CCONE code /8/.
*****************************************************************
Nuclear Model Calculation with CCONE code /8/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,7,10,19,32 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: Huizenga,J.R. and Igo,G./13/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-155
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3/2 - *
1 0.06001 5/2 - *
2 0.08655 5/2 +
3 0.10531 3/2 +
4 0.10758 9/2 +
5 0.11800 7/2 +
6 0.12105 11/2 -
7 0.14607 7/2 - *
8 0.21435 13/2 +
9 0.23013 11/2 +
10 0.25171 9/2 - *
11 0.26665 5/2 +
12 0.26862 3/2 +
13 0.28257 13/2 -
14 0.28700 3/2 -
15 0.32138 5/2 -
16 0.32609 5/2 +
17 0.35043 7/2 +
18 0.36763 1/2 +
19 0.39232 11/2 - *
20 0.39353 7/2 -
21 0.42341 7/2 +
22 0.42381 17/2 +
23 0.42724 3/2 +
24 0.45056 3/2 -
25 0.45137 1/2 -
26 0.45367 15/2 +
27 0.45448 5/2 -
28 0.46383 15/2 -
29 0.48000 5/2 -
30 0.48597 9/2 -
31 0.48872 5/2 +
32 0.53430 13/2 - *
33 0.55337 7/2 -
34 0.55937 1/2 -
35 0.58146 5/2 -
36 0.59214 3/2 -
37 0.61084 7/2 +
38 0.61486 3/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609
Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075
Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695
Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-156
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb)
ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb)
ER = 3.00 (MeV) EG = 1.00 (MeV) SIG = 0.40 (mb)
ER = 6.00 (MeV) EG = 2.00 (MeV) SIG = 2.00 (mb)
* M1: ER = 7.62 (MeV) EG = 4.00 (MeV) SIG = 2.03 (mb)
* E2: ER = 11.70 (MeV) EG = 4.24 (MeV) SIG = 3.69 (mb)
--------------------------------------------------------
References
1) Moller, H.B., et al.: Nucl. Sci. Eng., 8, 183 (1960).
2) Friesenhahn, S.J., et al.: Nucl. Phys., A146, 337 (1970).
3) Ribon, P.: CEA-N-1149 (1969).
4) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections,
Vol. I, Resonance Parameters", BNL 325, 3rd ed., Vol. 1,
(1973).
5) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).