64-Gd-156
64-Gd-156 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6437
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 2.214 keV
Evaluation for JENDL-2 was made on the basis of the data by
Karzhavina et al./1/ and by Coceva and Stefanon/2/.
The average radiation width of 0.10611 eV was assumed.
Scattering radius of 8.1 fm was adopted from bnl 325(3rd.)
/3/.
In JENDL-4, the data for 33.14 - 245.2 eV were replaced with
the ones obtained by Leinweber et al./4/ The 201.6-eV
resonance was removed, since it was not observed by Leinweber
et al.
Unresolved resonance region : 2.214 keV - 275.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 7.0734e+00
Elastic 5.2460e+00
n,gamma 1.8274e+00 1.0662e+02
n,alpha 3.4246e-10
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,4,18 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: Huizenga,J.R. and Igo,G./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-156
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.08897 2 + *
2 0.28819 4 + *
3 0.58471 6 + *
4 0.96513 8 + *
5 1.04949 0 +
6 1.12944 2 +
7 1.15415 2 +
8 1.16819 0 +
9 1.24248 1 -
10 1.24801 3 +
11 1.25807 2 +
12 1.27614 3 -
13 1.29782 4 +
14 1.31966 2 -
15 1.35542 4 +
16 1.36646 1 -
17 1.40813 5 -
18 1.41608 10 + *
19 1.46230 4 +
20 1.46851 4 -
21 1.50686 5 +
22 1.51059 4 +
23 1.53885 3 -
24 1.54019 6 +
25 1.57687 0 +
26 1.59500 0 +
27 1.62254 5 +
28 1.63800 7 -
29 1.64365 6 +
30 1.70580 6 -
31 1.71519 0 +
32 1.75365 6 +
33 1.76561 6 +
34 1.77109 2 +
35 1.78049 2 -
36 1.79872 5 -
37 1.80400 0 +
38 1.82784 2 +
39 1.84833 8 +
40 1.84984 7 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609
Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075
Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-157
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb)
ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb)
ER = 3.00 (MeV) EG = 1.00 (MeV) SIG = 0.26 (mb)
ER = 5.40 (MeV) EG = 0.20 (MeV) SIG = 0.50 (mb)
* M1: ER = 7.60 (MeV) EG = 4.00 (MeV) SIG = 1.78 (mb)
* E2: ER = 11.68 (MeV) EG = 4.23 (MeV) SIG = 3.68 (mb)
--------------------------------------------------------
References
1) Karzhavina, E.N., et al.: Yad. Fiz., 9, 897 (1969).
2) Coceva, C., Stefanon, M.: Nucl. Phys., A315, 1 (1979).
3) Mughabghab, s.f. and garber, d.i.: "neutron cross sections,
vol. 1, resonance parameters", bnl 325, 3rd ed., vol. 1,
(1973).
4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).