64-Gd-157
64-Gd-157 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6440
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF=2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance parameters for MLBW formula: below 303.7 eV
Evaluation for JENDL-2 was made on the basis of the data
measured by Moller et al./1/, Ribon/2/ and Karzhavina et
al./3/ The average radiation width of 0.121 eV was
assumed. The scattering radius was taken from Mughabghab
and garber/4/
For JENDL-3, total spin J of some resonances was estimated
with a random number method.
In JENDL-4, the data for 0.0314 - 294.16 eV were replaced
with the ones obtained by Leinweber et al./5/
It should be noted that the background capture cross
sections are required below 0.1 eV to reproduce the ICSBEP
benchmarks. The background is equal to the difference
between the capture cross sections of JENDL-3.3 and those
of the calculations using Leinweber's parameters.
Unresolved resonance region : 303.7 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /6/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /7/ and CCONE /8/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.5406e+05
Elastic 8.0447e+02
n,gamma 2.5325e+05 7.8382e+02
n,alpha 4.2228e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /8/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /8/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /8/.
MT= 22 (n,na) cross section
Calculated with CCONE code /8/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /8/.
MT= 28 (n,np) cross section
Calculated with CCONE code /8/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /8/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /8/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /8/.
MT=102 Capture cross section
Calculated with CCONE code /8/.
MT=103 (n,p) cross section
Calculated with CCONE code /8/.
MT=104 (n,d) cross section
Calculated with CCONE code /8/.
MT=105 (n,t) cross section
Calculated with CCONE code /8/.
MT=106 (n,He3) cross section
Calculated with CCONE code /8/.
MT=107 (n,a) cross section
Calculated with CCONE code /8/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /8/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /8/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /8/.
MT= 22 (n,na) reaction
Calculated with CCONE code /8/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /8/.
MT= 28 (n,np) reaction
Calculated with CCONE code /8/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /8/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /8/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /8/.
MT=102 Capture reaction
Calculated with CCONE code /8/.
*****************************************************************
Nuclear Model Calculation with CCONE code /8/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,4,6,9,15,24 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: Huizenga,J.R. and Igo,G./13/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-157
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3/2 - *
1 0.05453 5/2 - *
2 0.06392 5/2 +
3 0.11572 7/2 +
4 0.13145 7/2 - *
5 0.18023 9/2 +
6 0.22731 9/2 - *
7 0.27225 11/2 +
8 0.31500 9/2 +
9 0.34725 11/2 - *
10 0.36110 13/2 +
11 0.37200 13/2 +
12 0.42660 11/2 -
13 0.43443 5/2 -
14 0.47463 3/2 +
15 0.47887 13/2 - *
16 0.50900 15/2 +
17 0.51467 7/2 -
18 0.52485 5/2 +
19 0.56600 9/2 +
20 0.57946 7/2 +
21 0.60759 5/2 +
22 0.61240 17/2 +
23 0.61748 9/2 -
24 0.64056 15/2 - *
25 0.65570 9/2 +
26 0.66453 9/2 +
27 0.68290 1/2 +
28 0.68323 3/2 +
29 0.68667 5/2 +
30 0.70139 1/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609
Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155
Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-158
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 11.70 (MeV) EG = 2.60 (MeV) SIG = 165.00 (mb)
ER = 14.90 (MeV) EG = 3.80 (MeV) SIG = 249.00 (mb)
ER = 3.10 (MeV) EG = 1.00 (MeV) SIG = 0.35 (mb)
ER = 6.40 (MeV) EG = 1.50 (MeV) SIG = 3.00 (mb)
* M1: ER = 7.58 (MeV) EG = 4.00 (MeV) SIG = 1.79 (mb)
* E2: ER = 11.65 (MeV) EG = 4.21 (MeV) SIG = 3.66 (mb)
--------------------------------------------------------
References
1) Moller, H.B., et al.: Nucl. Sci. Eng., 8, 183 (1960).
2) Ribon, P.: CEA-N-1149 (1969).
3) Karzhavina, E.N., et al.: Jaderno-Fizicheskie Issledovanija,
6, 135 (1968).
4) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections,
Vol.1, Resonance Parameters", BNL 325, 3rd Ed., Vol. 1,
(1973).
5) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).