64-Gd-158
64-Gd-158 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6443
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 6.58 keV
In JENDL-3.3, parameters were mainly taken from the
experimental data of Rahn et al./1/. The average
radiative capture width of 0.088 eV was assumed. A negative
resonance was added so as to reproduce the thermal capture
cross section given by Mughabghab and Garber/4/. Scattering
radius of 6.5 fm was adopted from ref./2/
In JENDL-4, the parameters for 4 resonances between 22.3 and
277.4 eV were replace with those obtained by Leinweber et
al./3/ The energy of the negative resonance was adjusted.
Unresolved resonance region : 6.58 keV - 250.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.8418e+00
Elastic 3.6411e+00
n,gamma 2.2007e+00 7.2063e+01
n,alpha 9.1239e-12
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,4,15 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: Huizenga,J.R. and Igo,G./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-158
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.07951 2 + *
2 0.26146 4 + *
3 0.53902 6 + *
4 0.90412 8 + *
5 0.97715 1 -
6 1.02370 2 -
7 1.04164 3 -
8 1.15897 4 -
9 1.17648 5 -
10 1.18714 2 +
11 1.19617 0 +
12 1.25987 2 +
13 1.26351 1 -
14 1.26552 3 +
15 1.35000 10 + *
16 1.35847 4 +
17 1.37194 6 -
18 1.38063 4 +
19 1.39100 7 -
20 1.40294 3 -
21 1.40670 4 +
22 1.41400 2 -
23 1.44000 5 +
24 1.45235 0 +
25 1.48142 5 +
26 1.49910 5 +
27 1.51748 2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000
Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155
Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Sm-157 19.4276 0.9577 2.5335 0.5242 -0.9010 5.1968
Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-159
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 11.70 (MeV) EG = 2.60 (MeV) SIG = 165.00 (mb)
ER = 14.90 (MeV) EG = 3.80 (MeV) SIG = 249.00 (mb)
ER = 3.20 (MeV) EG = 1.20 (MeV) SIG = 0.20 (mb)
ER = 4.90 (MeV) EG = 0.20 (MeV) SIG = 0.30 (mb)
* M1: ER = 7.57 (MeV) EG = 4.00 (MeV) SIG = 1.39 (mb)
* E2: ER = 11.63 (MeV) EG = 4.20 (MeV) SIG = 3.65 (mb)
--------------------------------------------------------
References
1) Rahn, F., et al.: Phys. Rev., C10, 1904 (1974).
2) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections,
Vol.1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1,
(1973).
3) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).