64-Gd-160
64-Gd-160 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6449
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 4.224 keV
Evaluation of JENDL-2 was made mainly on the basis of the
experimental data of Rahn et al./1/ The average radiation
width was assumed to be 0.088 eV. A negative resonance was
added so as to reproduce the thermal capture cross section
given by Mughabghab/2,3/. Scattering radius of 6.8 fm
was based on the recommendation in ref./2/
In JENDL-4, the parameters for 222.2-eV resonance were
replaced with those obtained by Leiweber et al./4/
Unresolved resonance region : 4.224 keV - 250.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.9028e+00
Elastic 4.1173e+00
n,gamma 7.8551e-01 1.1801e+01
n,alpha 4.4645e-15
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,4,17 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: Huizenga,J.R. and Igo,G./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Gd-160
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.07526 2 + *
2 0.24852 4 + *
3 0.51475 6 + *
4 0.86790 8 + *
5 0.91300 2 -
6 0.94600 5 -
7 0.98840 2 +
8 1.01600 4 -
9 1.05754 3 +
10 1.07042 4 +
11 1.14778 4 +
12 1.19269 5 +
13 1.22428 1 -
14 1.26107 5 +
15 1.29010 3 -
16 1.29557 4 +
17 1.30070 10 + *
18 1.32573 0 +
19 1.33111 6 +
20 1.35109 2 +
21 1.37706 2 +
22 1.37956 0 +
23 1.38864 2 +
24 1.39280 6 +
25 1.42786 5 -
26 1.43599 2 +
27 1.46030 3 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Gd-161 19.6000 0.9457 2.2447 0.5241 -0.8691 5.1638
Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078
Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
Eu-160 19.0105 0.0000 2.2595 0.3149 0.0142 1.0000
Eu-159 18.2543 0.9517 2.5499 0.5516 -0.9411 5.3313
Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000
Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155
Sm-159 19.6278 0.9517 2.4416 0.3052 0.9489 1.9517
Sm-158 18.9322 1.9093 2.7143 0.5948 -0.8271 7.3891
Sm-157 19.4276 0.9577 2.5335 0.5242 -0.9010 5.1968
Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
--------------------------------------------------------
Table 3. Gamma-ray strength function for Gd-161
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 12.23 (MeV) EG = 2.77 (MeV) SIG = 215.00 (mb)
ER = 15.96 (MeV) EG = 5.28 (MeV) SIG = 233.00 (mb)
ER = 3.30 (MeV) EG = 1.50 (MeV) SIG = 0.40 (mb)
* M1: ER = 7.54 (MeV) EG = 4.00 (MeV) SIG = 1.47 (mb)
* E2: ER = 11.58 (MeV) EG = 4.18 (MeV) SIG = 3.63 (mb)
--------------------------------------------------------
References
1) Rahn, F., et al.: Phys. Rev., C10, 1904 (1974).
2) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections,
Vol. 1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1,
(1973).
3) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).