49-In-115
49-In-115 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
DIST-MAY10 20100316
----JENDL-4.0 MATERIAL 4931
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 Re-evaluation was performed for JENDL-4.0
10-03 Compiled by S.Kunieda
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
- Resolved resonance region (MLBW formula): below 2 keV
For JENDL-2, parameters were taken from the experiment by
Hacken et al./1/ Angular momentum l and spin j were
based on the measurement of Corvi and Stefanon/2/. The
average radiation width of 0.085 eV was deduced /2/ and
applied to the levels whose radiation width was unknown.
For JENDL-3, total spin j of some resonances was tentativ-
ely estimated with a random number method.
For JENDL-4, the data for 29.67 - 2004 eV were replaced
with the ones obtained by Frankle et al./3/ J for 39.56
eV was taken from the work of Georgiev et al./4/ Part
of J values were taken from the work of Corvi and Stafanon.
The remaining J values were estiamted by a random number
method.
- Unresolved resonance region: 2 keV - 300 keV
The parameters were obtained by fitting to the total and
capture cross sections calculated by the POD code /5/.
The ASREP code /6/ was employed in this evaluation.
The unresolved parameters should be used only for
self-shielding calculation.
Thermal cross sections & resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 2.03690E+02
Elastic 2.53816E+00
n,gamma 2.01152E+02 3.20897E+03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
The OPTMAN /7/ & POD /5/ calculations.
MT= 3 Non-elastic cross section
Sum of partial non-elastic cross sections.
MT= 4,51-91 (n,n') cross section
The OPTMAN /7/ & POD /5/ calculations.
MT= 16 (n,2n) cross section
MT= 17 (n,3n) cross section
MT= 22 (n,na) cross section
MT= 28 (n,np) cross section
MT= 32 (n,nd) cross section
Calculated by the POD code /5/.
MT=102 Capture cross section
Calculated by the POD code /5/. The value of gamma-ray
strength function was set to the recomendation value by
Mughabghab /8/.
MT=103 (n,p) cross section
MT=104 (n,d) cross section
MT=105 (n,t) cross section
MT=106 (n,He3) cross section
MT=107 (n,a) cross section
Calculated by the POD code /5/.
MT=203 (n,xp) cross section
Sum of (n,np) and (n,p)
MT=204 (n,xd) cross section
Sum of (n,nd) and (n,d)
MT=205 (n,xt) cross section
MT=206 (n,xHe3) cross section
Calculated by the POD code /5/.
MT=207 (n,xa) cross section
Sum of (n,na) and (n,a)
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
The OPTMAN /7/ & POD /5/ calculations.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
MT= 17 (n,3n) reaction
MT= 22 (n,na) reaction
MT= 28 (n,np) reaction
MT= 32 (n,nd) reaction
Neutron spectra calculated by the POD code /5/.
MT= 51-90 (n,n') reaction
Neutron angular distributions calculated by
OPTMAN /7/ & POD /5/.
MT= 91 (n,n') reaction
Neutron spectra calculated by the POD code /5/.
MT= 203 (n,xp) reaction
MT= 204 (n,xd) reaction
MT= 205 (n,xt) reaction
MT= 206 (n,xHe3) reaction
MT= 207 (n,xa) reaction
Light-ion spectra calculated by the POD code /6/.
MF=12 Gamma-ray multiplicities
MT= 3 Non-elastic gamma emission
Calculated by the POD code /5/.
MF=14 Gamma-ray angular distributions
MT= 3 Non-elastic gamma emission
Assumed to be isotropic.
MF=15 Gamma-ray spectra
MT= 3 Non-elastic gamma emission
Calculated by the POD code /5/.
***************************************************************
* Nuclear Model Calculations with POD Code /5/ *
***************************************************************
1. Theoretical models
The POD code is based on the spherical optical model, the
distorted-wave Born approximaiton (DWBA), one-component exciton
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-
tical model. With the preequilibrium model, semi-empirical
pickup and knockout process can be taken into account for
composite-particle emission. The gamma-ray emission from the
compound nucleus can be calculated within the framework of the
exciton model. The code is capable of reading in particle
transmission coefficients calculated by separate spherical or
coupled-channel optical model code. In this evaluation, the OPTMAN
code /7/ was employed for neutrons, while the ECIS code
/9/ was adopted for charged particles.
2. Optical model & parameters
Neutrons:
Model: Coupled-channel model based on the rigid-rotor model
OMP : Based on the Coupled-channel optical potential /10/
The original Parameters were slightly modified as
listed below to give a precise reaction cross sections.
------------------------------------------------------------
- Real-volume term
VR0= -3.80E+1 MeV VR1= 2.70E-2 MeV VR2= 1.20E-4 MeV
VR3= 3.50E-7 MeV VRLA= 9.49E+1 MeV ALAVR= 4.30E-3
r= 1.21E+0 a= 6.55E-1
- Imaginary-surface term
WDBW= 1.35E+1 MeV WDWID= 1.40E+1 MeV ALAWD= 1.40E-2
r= 1.21E+0 a= 6.55E-1
- Imaginary-volume term
WCBW= 1.70E+1 MeV WCWID= 1.02E+2 MeV
r= 1.21E+0 a= 6.55E-1
- Spin-orbit term
VS= 6.27E+0 MeV ALASO= 5.00E-3
WSBW= -3.10E+0 MeV WSWID= 1.60E+2 MeV
r= 1.05E+0 a= 5.90E-1
- Isospin coefficients
CISO= 2.43E+1 WCISO= 1.80E+1 CCOUL= 9.00E-1
- Deformation parameter
Beta2= -1.20E-1
------------------------------------------------------------
Protons:
Model: Spherical
OMP : Koning and Delaroche /11/
Deuterons:
Model: Spherical
OMP : Bojowald et al. /12/
Tritons:
Mode: Spherical
OMP : Becchetti and Greenlees /13/
He-3:
Model: Spherical
OMP : Becchetti and Greenlees /13/
Alphas:
Model: Spherical
OMP : A simplified folding model potential /14/
(The nucleon OMP was taken from Ref./10/.)
3. Level scheme of In-115
------------------------------------
No. Ex(MeV) J PI CC
------------------------------------
0 0.00000 9/2 + *
1 0.33624 1/2 -
2 0.59714 3/2 -
3 0.82858 3/2 +
4 0.86413 1/2 +
5 0.93378 7/2 +
6 0.94143 5/2 +
7 1.04150 5/2 -
8 1.07820 5/2 +
9 1.13257 11/2 + *
10 1.19250 3/2 -
11 1.28740 3/2 -
12 1.29059 13/2 +
13 1.34750 5/2 -
14 1.41825 9/2 +
15 1.44878 9/2 +
16 1.46330 7/2 +
17 1.47000 3/2 -
18 1.47850 5/2 +
------------------------------------
Levels above 1.48850 MeV are assumed to be continuous.
4. Level density parameters
Energy-dependent parameters of Mengoni-Nakajima /15/ were used
----------------------------------------------------------
Nuclei a* Pair Esh T E0 Ematch Elv_max
1/MeV MeV MeV MeV MeV MeV MeV
----------------------------------------------------------
In-116 14.419 0.000 2.599 0.598 -1.472 4.453 0.290
In-115 13.831 1.119 2.468 0.633 -0.459 5.874 1.478
In-114 14.275 0.000 2.256 0.601 -1.368 4.328 0.642
In-113 16.000 1.129 2.058 0.584 -0.576 5.783 1.191
Cd-115 15.353 1.119 3.119 0.604 -0.907 6.275 0.803
Cd-114 14.703 2.248 2.747 0.629 0.285 7.448 2.465
Cd-113 14.918 1.129 2.940 0.622 -0.905 6.375 1.352
Ag-113 13.626 1.129 3.744 0.689 -1.414 7.329 0.271
Ag-112 14.064 0.000 3.764 0.653 -2.318 5.738 0.018
Ag-111 13.420 1.139 3.581 0.725 -1.706 7.873 1.277
----------------------------------------------------------
The value of a* for In-113 was slightly changed from the
original value.
5. Gamma-ray strength functions
M1, E2: Standard Lorentzian (SLO)
E1 : Generalized Lorentzian (GLO) /16/
6. Preequilibrium process
Preequilibrium is on for n, p, d, t, He-3, and alpha.
Preequilibrium capture is on.
References
1) Hacken, G., et al.: Phys. Rev., C10, 1910 (1974).
2) Corvi, F. and Stefanon, M.: Nucl. Phys., A233, 185 (1974).
3) Frankle, C.M. et al.: Phys. Rev., C48, 1601 (1993).
4) Georgiev, G.P. et al.: JINR-E3-95-307, p170 (1995).
5) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).
6) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).
8) S.F.Mughabghab, "Atlas of Neutron Resonances",
Elsevier (2006).
9) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).
10) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).
11) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
12) Bojowald et al., Phys. Rev. C 38, 1153 (1988).
13) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization
Phenomena in Nuclear Reactions," p.682, The University
of Wisconsin Press (1971).
14) D.G.Madland, NEANDC-245 (1988), p. 103.
15) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151
(1994).
16) M.Brink, Ph.D thesis, Oxford University, 1955.