36-Kr- 84
36-Kr- 84 JAEA EVAL-AUG09 K.Shibata, A.Ichihara, S.Kunieda
DIST-MAY10 20091118
----JENDL-4.0 MATERIAL 3643
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-08 Evaluated by K. Shibata, A. Ichihara and S. Kunieda.
09-10 Compiled by K. Shibata.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.48 keV
Evaluation of JENDL-2 was performed as follows :
Neutron widths and average radiation width for the two
positive levels at 519 and 580 eV were taken from the data
given by Mughabghab et al./1/ The six resonance levels
from 1.164 to 2.12 keV were abandoned, because their
isotopic assignment was uncertain. The value of average
radiation width was modified to 121 meV so as to reproduce
the neutron resonance capture integral of 2.43+-0.2 barns
given by Mughabghab et al. The values of neutron orbital
angular momentum L and total spin J were assumed to be 0
and 0.5, respectively. Scattering radius was also taken
from the graph (Fig. 1, part A) given by Mughabghab et al.
A negative resonance was added at -150 eV so as to reproduce
the thermal capture cross section of 0.110+-0.015 barns/1/.
For JENDL-3 and -4, any modification was not made, because
new measurements have not been carried out.
Unresolved resonance region: 2.48 keV - 1 MeV
The parameters were obtained by fitting to the total and
capture cross sections calculated from POD /2/. The
unresolved parameters should be used only for self-shielding
calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 6.3071E+00
Elastic 6.1971E+00
n,gamma 1.1004E-01 2.3895E+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Calculated with POD code /2/.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic cross sections from total
cross sections.
MT= 3 Non-elastic cross section
Sum of partial non-elastic cross sections.
MT= 4,51-91 (n,n') cross section
Calculated with POD code /2/.
MT= 16 (n,2n) cross section
Calculated with POD code /2/.
MT= 17 (n,3n) cross section
Calculated with POD code /2/.
MT= 22 (n,na) cross section
Calculated with POD code /2/.
MT= 28 (n,np) cross section
Calculated with POD code /2/.
MT=102 Capture cross section
Calculated with POD code /2/.
MT=103 (n,p) cross section
Calculated with POD code /2/.
MT=104 (n,d) cross section
Calculated with POD code /2/.
MT=105 (n,t) cross section
Calculated with POD code /2/.
MT=106 (n,He3) cross section
Calculated with POD code /2/.
MT=107 (n,a) cross section
Calculated with POD code /2/.
MT=203 (n,xp) cross section
Calculated with POD code /2/.
MT=204 (n,xd) cross section
Calculated with POD code /2/.
MT=205 (n,xt) cross section
Calculated with POD code /2/.
MT=206 (n,xHe3) cross section
Calculated with POD code /2/.
MT=207 (n,xa) cross section
Calculated with POD code /2/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with POD code /2/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Neutron spectra calculated with POD/2/.
MT= 17 (n,3n) reaction
Neutron spectra calculated with POD/2/.
MT= 22 (n,na) reaction
Neutron spectra calculated with POD/2/.
MT= 28 (n,np) reaction
Neutron spectra calculated with POD/2/.
MT= 51 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 52 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 53 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 54 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 55 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 56 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 57 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 58 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 59 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 60 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 61 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 62 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 63 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 64 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 65 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 66 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 67 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 68 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 69 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 70 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 71 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 72 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 73 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 74 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 75 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 76 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 77 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 78 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 79 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 80 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 81 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 82 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 83 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 84 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 85 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 86 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 87 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 88 (n,n') reaction
Neutron angular distributions calculated with POD/2/.
MT= 91 (n,n') reaction
Neutron spectra calculated with POD/2/.
MT= 203 (n,xp) reaction
Proton spectra calculated with POD/2/.
MT= 204 (n,xd) reaction
Deuteron spectra calculated with POD/2/.
MT= 205 (n,xt) reaction
Triton spectra calculated with POD/2/.
MT= 206 (n,xHe3) reaction
He3 spectra calculated with POD/2/.
MT= 207 (n,xa) reaction
Alpha spectra calculated with POD/2/.
MF=12 Gamma-ray multiplicities
MT= 3 Non-elastic gamma emission
Calculated with POD code /2/.
MF=14 Gamma-ray angular distributions
MT= 3 Non-elastic gamma emission
Assumed to be isotropic.
MF=15 Gamma-ray spectra
MT= 3 Non-elastic gamma emission
Calculated with POD code /2/.
***************************************************************
* Nuclear Model Calculations with POD Code /2/ *
***************************************************************
1. Theoretical models
The POD code is based on the spherical optical model, the
distorted-wave Born approximaiton (DWBA), one-component exciton
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-
tical model. With the preequilibrim model, semi-empirical
pickup and knockout process can be taken into account for
composite-particle emission. The gamma-ray emission from the
compound nucleus can be calculated within the framework of the
exciton model. The code is capable of reading in particle
transmission coefficients calculated by separate spherical or
coupled-channel optical model code.
2. Optical model parameters
Neutrons:
Coupled-channel optical model parameters /3/
Protons:
Koning and Delaroche /4/
Deuterons:
Lohr and Haeberli /5/
Tritons:
Becchetti and Greenlees /6/
He-3:
Becchetti and Greenlees /6/
Alphas:
Lemos /7/ potentials modified by Arthur and Young /8/
3. Level scheme of Kr- 84
-------------------------
No. Ex(MeV) J PI
-------------------------
0 0.00000 0 +
1 0.88162 2 +
2 1.83730 0 +
3 1.89778 2 +
4 2.09500 4 +
5 2.34546 4 +
6 2.48920 2 +
7 2.62298 2 +
8 2.70028 3 -
9 2.75928 2 +
10 2.77095 5 -
11 2.77500 2 +
12 2.86109 3 -
13 3.04211 2 +
14 3.08238 3 -
15 3.17251 6 +
16 3.18329 4 +
17 3.21934 5 -
18 3.23602 8 +
19 3.28867 5 +
20 3.31239 3 -
21 3.33500 1 -
22 3.36588 1 -
23 3.40816 3 -
24 3.42673 2 +
25 3.46300 7 +
26 3.47575 1 -
27 3.57000 3 -
28 3.58710 6 -
29 3.63850 5 -
30 3.65147 7 -
31 3.70587 2 +
32 3.71821 3 -
33 3.77700 2 -
34 3.83158 7 -
35 3.87010 3 -
36 3.87880 2 +
37 3.92733 1 -
38 3.95121 6 +
-------------------------
Levels above 3.96121 MeV are assumed to be continuous.
4. Level density parameters
Energy-dependent parameters of Mengoni-Nakajima /9/ were used
----------------------------------------------------------
Nuclei a* Pair Esh T E0 Ematch Elv_max
1/MeV MeV MeV MeV MeV MeV MeV
----------------------------------------------------------
Kr- 85 11.890 1.302 0.718 0.695 0.285 5.433 2.637
Kr- 84 11.089 2.619 1.235 0.745 1.364 7.286 3.951
Kr- 83 11.668 1.317 2.381 0.710 -0.316 6.290 1.889
Kr- 82 10.867 2.650 2.503 0.781 0.700 8.353 3.187
Br- 84 11.060 0.000 0.608 0.898 -2.409 6.862 0.408
Br- 83 10.507 1.317 1.382 0.813 -0.276 6.734 2.134
Br- 82 10.599 0.000 2.092 0.832 -2.117 6.154 1.261
Se- 82 10.867 2.650 1.071 0.699 1.874 6.455 3.586
Se- 81 10.589 1.333 1.999 0.755 -0.063 6.204 2.253
Se- 80 10.645 2.683 2.442 0.815 0.539 8.768 3.226
----------------------------------------------------------
5. Gamma-ray strength functions
M1, E2: Standard Lorentzian (SLO)
E1 : Generalized Lorentzian (GLO) /10/
6. Preequilibrium process
Preequilibrium is on for n, p, d, t, He-3, and alpha.
Preequilibrium capture is on.
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).
3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).
4) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
5) J.M.Lohr, W.Haeberli, Nucl. Phys. A232, 381 (1974).
6) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization
Phenomena in Nuclear Reactions," p.682, The University
of Wisconsin Press (1971).
7) O.F.Lemos, Orsay Report, Series A, No.136 (1972).
8) E.D.Arthur, P.G.Young, LA-8626-MS (1980).
9) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151
(1994).
10) J.Kopecky, M.Uhl, Nucl. Sci. Eng. 41, 1941 (1990).